

The Global Language of Business

EPC Tag Data Standard

defines the Electronic Product Code[™] and specifies the memory contents of Gen 2 RFID Tags

Release 1.12, Ratified, May 2019

Document Summary 2

Document Item	Current Value
Document Name	EPC Tag Data Standard
Document Date	May 2019
Document Version	1.12
Document Issue	
Document Status	Ratified
Document Description	defines the Electronic Product Code [™] and specifies the memory contents of Gen 2 RFID Tags

Contributors to current version 3

Name	Organisation	Role	
Craig Alan Repec	GS1 Global Office	Editor	
Mark Harrison	GS1 Global Office	Co-Editor	
Danny Haak	Nedap N.V.	Contributor	
Daniel Mullen	GS1 Global Office	Contributor	
Hemant Sahgal	Iris Software	Contributor	
Ralph Tröger	GS1 Germany	Contributor	

Log of Changes 4

Release	Date of Change	Changed By	Summary of Change
1.9.1	8 July 2015	D. Buckley	New GS1 branding applied
1.10	Mar 2017	Craig Alan Repec	Listed in full in the Abstract below
1.11	Sep 2017	Craig Alan Repec	Listed in full in the Abstract below
1.12	April 2019	Craig Alan Repec and Mark Harrison	WR 19-076 Added EPC URI for UPUI, to support EU 2018/574, as well as EPC URI for PGLN – GLN of Party AI (417) – in accordance with GS1 General Specifications 19.1; Added normative specificatons around handling of GCP length for individually assigned GS1 Keys; Corrected ITIP pure identity pattern syntax; Introduced "Fixed Width Integer" encoding and decoding sections in support of ITIP binary encoding.

Disclaimer 5

6 GS1[®], under its IP Policy, seeks to avoid uncertainty regarding intellectual property claims by requiring the participants in 7 the Work Group that developed this EPC Tag Data Standard to agree to grant to GS1 members a royalty-free licence or a 8 9 RAND licence to Necessary Claims, as that term is defined in the GS1 IP Policy. Furthermore, attention is drawn to the possibility that an implementation of one or more features of this Specification may be the subject of a patent or other 10 intellectual property right that does not involve a Necessary Claim. Any such patent or other intellectual property right is 11 not subject to the licencing obligations of GS1. Moreover, the agreement to grant licences provided under the GS1 IP Policy 12 does not include IP rights and any claims of third parties who were not participants in the Work Group.

- Accordingly, GS1 recommends that any organization developing an implementation designed to be in conformance with this
- 14 Specification should determine whether there are any patents that may encompass a specific implementation that the
- 15 organisation is developing in compliance with the Specification and whether a licence under a patent or other intellectual
- property right is needed. Such a determination of a need for licencing should be made in view of the details of the specific
- system designed by the organisation in consultation with their own patent counsel.
- 18 THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF
- 19 MERCHANTABILITY, NONINFRINEGMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY OTHER WISE ARISING 20 OUT OF THIS SPECIFICATION. GS1 disclaims all liability for any damages arising from use or misuse of this Standard,
- 21 whether special, indirect, consequential, or compensatory damages, and including liability for infringement of any
- 22 intellectual property rights, relating to use of information in or reliance upon this document.
- GS1 retains the right to make changes to this document at any time, without notice. GS1 makes no warranty for the use of
 this document and assumes no responsibility for any errors which may appear in the document, nor does it make a
 commitment to update the information contained herein.
- 26 GS1 and the GS1 logo are registered trademarks of GS1 AISBL.
- 27

Table of Contents

29	Foi	rewo	ord		. 10
30	1	Int	roduc	tion	. 14
31	2	Те	rminol	ogy and typographical conventions	. 14
32	3	Ov	erview	v of the Tag Data Standard	. 14
33	4	Th	e Elect	tronic Product Code: A universal identifier for physical objects	. 17
34		4.1		need for a universal identifier: an example	
35		4.2		of identifiers in a Business Data Context	
36		4.3	Relat	tionship between EPCs and GS1 keys	. 20
37		4.4		of the EPC in EPCglobal Architecture Framework	
38	5	Со	mmon	grammar elements	. 24
39	6	EP			. 25
40		6.1		of the EPC URI	
41		6.2		nment of EPCs to physical objects	
42		6.3	-	URI syntax	
43			6.3.1	Serialised Global Trade Item Number (SGTIN)	
44			6.3.2	Serial Shipping Container Code (SSCC)	
45			6.3.3	Global Location Number With or Without Extension (SGLN)	
46			6.3.4	Global Returnable Asset Identifier (GRAI)	
47			6.3.5	Global Individual Asset Identifier (GIAI)	
48			6.3.6	Global Service Relation Number – Recipient (GSRN)	
49			6.3.7	Global Service Relation Number – Provider (GSRNP)	
50			6.3.8	Global Document Type Identifier (GDTI)	
51			6.3.9	Component / Part Identifier (CPI)	
52			6.3.10	Serialised Global Coupon Number (SGCN)	
53			6.3.11	Global Identification Number for Consignment (GINC)	
54			6.3.12	Global Shipment Identification Number (GSIN)	
55			6.3.13	Individual Trade Item Piece (ITIP)	
56			6.3.14	Unit Pack Identifier (UPUI)	
57			6.3.15	Global Location Number of Party (PGLN)	
58			6.3.16	General Identifier (GID)	
59			6.3.17	US Department of Defense Identifier (DOD)	
60			6.3.18	Aerospace and Defense Identifier (ADI)	
61				BIC Container Code (BIC)	
62		6.4		Class URI Syntax	
63			6.4.1	GTIN + Batch/Lot (LGTIN)	
64	7	Со	rrespo	ndence between EPCs and GS1 Keys	. 41
65		7.1		GS1 Company Prefix (GCP) in EPC encodings	
66		7.2		rmining length of the EPC CompanyPrefix component for individually assigned GS1 Keys	
67			7.2.1	Individually assigned GTINs	
68			7.2.2	Individually assigned GLNs	
				-	

69		7	2.3 Other individually assigned GS1 Keys	42
70		7.3	Serialised Global Trade Item Number (SGTIN)	43
71		7	3.1 GTIN-12 and GTIN-13	44
72		7	3.2 GTIN-8	44
73		7	3.3 RCN-8	45
74		7	3.4 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007)	45
75		7	3.5 Restricted Circulation (GS1 Prefixes 02 and 20 – 29)	45
76		7	3.6 Coupon Code Identification for Restricted Distribution (GS1 Prefixes 981-984 and 99)	45
77		7	3.7 Refund Receipt (GS1 Prefix 980)	
78		7	3.8 ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979)	45
79		7.4	Serial Shipping Container Code (SSCC)	46
80		7.5	Global Location Number With or Without Extension (SGLN)	47
81		7.6	Global Returnable Asset Identifier (GRAI)	49
82		7.7	Global Individual Asset Identifier (GIAI)	50
83		7.8	Global Service Relation Number – Recipient (GSRN)	51
84		7.9	Global Service Relation Number – Provider (GSRNP)	
85		7.10	Global Document Type Identifier (GDTI)	
86		7.11	Component and Part Identifier (CPI)	
87		7.12	Serialised Global Coupon Number (SGCN)	
88		7.13	Global Identification Number for Consignment (GINC)	
89		7.14	Global Shipment Identification Number (GSIN)	
90		7.15	Individual Trade Item Piece (ITIP)	
91		7.16	Unit Pack Identifier (UPUI)	
92		7.17	Global Location Number of Party (PGLN)	
93		7.18	GTIN + batch/lot (LGTIN)	62
94	8	URIS	for EPC Pure identity patterns	63
95	•	8.1	Syntax	
96		8.2	Semantics	
97	9	Mem	ory Organisation of Gen 2 RFID tags	66
98		9.1	Types of Tag Data	
99		9.2	Gen 2 Tag Memory Map	67
100	10	F	ilter Value	71
101		10.1	Use of "Reserved" and "All Others" Filter Values	
102		10.2	Filter Values for SGTIN EPC Tags	
103		10.3	Filter Values for SSCC EPC Tags	
104		10.4	Filter Values for SGLN EPC Tags	
105		10.5	Filter Values for GRAI EPC Tags	
106		10.6	Filter Values for GIAI EPC Tags	
107		10.7	Filter Values for GSRN and GSRNP EPC Tags	
108		10.8	Filter Values for GDTI EPC Tags	
109		10.9	Filter Values for CPI EPC Tags	
110		10.10	Filter Values for SGCN EPC Tags	
111		10.11	Filter Values for ITIP EPC Tags	
112		10.12	Filter Values for GID EPC Tags	
113			Filter Values for DOD EPC Tags	
114			Filter Values for ADI EPC Tags	

115	11	Attrib	oute bits	76
116	12	EPC T	ag URI and EPC Raw URI	77
117		12.1 Struc	cture of the EPC Tag URI and EPC Raw URI	
118		12.2 Cont	rol Information	
119		12.2.1	Filter Values	
120		12.2.2	Other control information fields	
121		12.3 EPC	Tag URI and EPC Pure Identity URI	80
122		12.3.1	EPC Binary Coding Schemes	80
123		12.3.2	EPC Pure Identity URI to EPC Tag URI	83
124		12.3.3	EPC Tag URI to EPC Pure Identity URI	84
125		12.4 Gram	nmar	
126	13		for EPC Tag Encoding patterns	
127		13.1 Synta	ax	86
128		13.2 Sema	antics	
129	14	EPC B	Binary Encoding	88
130		14.1 Over	view of Binary Encoding	88
131		14.2 EPC I	Binary Headers	88
132		14.3 Enco	ding procedure	
133		14.3.1	"Integer" Encoding Method	
134		14.3.2	"String" Encoding method	
135		14.3.3	"Partition Table" Encoding method	
136		14.3.4	"Unpadded Partition Table" Encoding method	
137		14.3.5	"String Partition Table" Encoding method	
138		14.3.6	"Numeric String" Encoding method	
139		14.3.7	"6-bit CAGE/DODAAC" Encoding method	
140		14.3.8	"6-Bit Variable String" Encoding method	
141		14.3.9	"6-Bit Variable String Partition Table" Encoding method	
142		14.3.10) "Fixed Width Integer" Encoding Method	97
143		14.4 Deco	ding procedure	98
144		14.4.1	"Integer" Decoding method	
145		14.4.2	"String" Decoding method	
146		14.4.3	"Partition Table" Decoding method	
147		14.4.4	"Unpadded Partition Table" Decoding method	
148		14.4.5	"String Partition Table" Decoding method	
149		14.4.6	"Numeric String" Decoding method	
150		14.4.7	"6-Bit CAGE/DoDAAC" Decoding method	
151		14.4.8	"6-Bit Variable String" Decoding method	
152		14.4.9	"6-Bit Variable String Partition Table" Decoding method	
153		14.4.10) "Fixed Width Integer" Decoding method	
154		14.5 EPC I	Binary coding tables	
155		14.5.1	Serialised Global Trade Item Number (SGTIN)	
156		14.5.2	Serial Shipping Container Code (SSCC)	
157		14.5.3	Global Location Number with or without Extension (SGLN)	
158		14.5.4	Global Returnable Asset Identifier (GRAI)	
159		14.5.5	Global Individual Asset Identifier (GIAI)	
160		14.5.6	Global Service Relation Number (GSRN)	112

203	В	Glossary (non-normative)
202	Α	Character Set for Alphanumeric Serial Numbers
201		18.3 Conformance of Human Readable Forms of the EPC and of EPC Memory Bank contents136
200		18.2.3 Conformance of hardware and software components that translate between EPC Forms136
199		of the EPC134
197 198		Memory Bank Contents
196 107		18.2.1 Conformance of hardware and software Components That Produce or Consume Gen 2
195		18.2 Conformance of Hardware and Software Components
194		18.1.4 Conformance of User Memory Bank (Bank 11)133
193		18.1.3 Conformance of TID Memory Bank (Bank 10)133
192		18.1.2 Conformance of EPC Memory Bank (Bank 01)132
191		18.1.1 Conformance of Reserved Memory Bank (Bank 00)132
190		18.1 Conformance of RFID Tag Data132
189	18	Conformance 132
188	17	User Memory Bank Contents 131
187		16.3.2 Decoding procedure: TID Bank Contents to STID URI
186		16.3.1 STID URI grammar130
185		16.3 Serialised Tag Identification (STID)
184		16.2.5 User Memory and BlockPermaLock segment130
183		16.2.4 BlockWrite and BlockErase segment
182		16.2.3 Optional Command Support segment
181		16.2.2 XTID Serialisation
180		16.2.1 XTID Header
179		16.2 Extended Tag identification (XTID)
178		16.1 Short Tag Identification (TID)
177	16	Tag Identification (TID) Memory Bank Contents
176		15.2.4 Decoding of control information
175		15.2.3 Gen 2 EPC Memory Bank into Pure Identity EPC URI
174		15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI
173		15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI
172		15.2 Decoding procedures
171		15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank
170		15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank
169	10	15.1 Encoding procedures
168	15	EPC Memory Bank contents
167		14.5.13 ADI Identifier (ADI)
166		14.5.12 DoD Identifier
165		14.5.10 Individual frade frem fiece (TFF)
164		14.5.9 Global Coupon Number (SGCN)117 14.5.10 Individual Trade Item Piece (ITIP)118
162 163		14.5.8 CPI Identifier (CPI)
161		14.5.7 Global Document Type Identifier (GDTI)
1/1		14 F. 7. Clobal Desumeent Type Identifier (CDTI)

204	С	References1	42
205	D	Extensible Bit Vectors	43
206 207 208 209	E	(non-normative) Examples: EPC encoding and decoding1E.1Encoding a Serialised Global Trade Item Number (SGTIN) to SGTIN-961E.2Decoding an SGTIN-96 to a Serialised Global Trade Item Number (SGTIN)1E.3Summary Examples of All EPC schemes1	44 46
210 211 212	F	Packed objects ID Table for Data Format 9.1F.1Tabular Format (non-normative).1F.2Comma-Separated-Value (CSV) format.1	52
213	G	6-Bit Alphanumeric Character Set1	71
214	н	(Intentionally Omitted)1	72
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231	1	Packed Objects structure11.1Overview11.2Overview of Packed Objects documentation11.3High-Level Packed Objects format design11.3.1Overview11.3.2Descriptions of each section of a Packed Object's structure11.4Format Flags section11.4.1Data terminating flag pattern11.4.2Format flags section starting bit patterns11.4.3IDLPO Format Flags11.4.4Patterns for use between Packed Objects11.5Object Info formats11.5.2Length Information11.5.3General description of ID values11.5.4ID Values representation in an ID Value-list Packed Object1	 73 73 73 74 75 76 76 76 77 77 78 79 81
231 232 233 234 235 236 237 238 239 240 241 242		1.5.5 ID Values representation in an ID Map Packed Object. 1 1.5.6 Optional Addendum subsection of the Object Info section 1 1.6 Secondary ID Bits section 1 1.7 Aux Format section 1 1.7.1 Support for No-Directory compaction methods 1 1.7.2 Support for the packed-object compaction method 1 1.8 Data section 1 1.8.1 Known-length-Numerics subsection of the data section 1 1.8.2 Alphanumeric subsection of the data section 1 1.9 ID Map and Directory encoding options 1 1.9.2 Directory Packed Objects 1	81 83 84 84 85 85 85 88 88
243 244 245 246	J	Packed Objects ID tables 1 J.1 Packed Objects data format registration file structure 1 J.1.1 File Header section 1 J.1.2 Table Header section 1	93 94

247		J.1.3 ID Table section	195
248		J.2 Mandatory and pptional ID table columns	195
249		J.2.1 IDvalue column (Mandatory)	196
250		J.2.2 OIDs and IDstring columns (Optional)	196
251		J.2.3 FormatString column (Optional)	197
252		J.2.4 Interp column (Optional)	197
253		J.3 Syntax of OIDs, IDstring, and FormatString Columns	198
254		J.3.1 Semantics for OIDs, IDString, and FormatString Columns	198
255		J.3.2 Formal Grammar for OIDs, IDString, and FormatString Columns	199
256		J.4 OID input/output representation	200
257		J.4.1 "ID Value OID" output representation	200
258	К	Packed Objects encoding tables	202
259	L	Encoding Packed Objects (non-normative)	208
260	Μ	Decoding Packed Objects (non-normative)	212
261		M.1 Overview	212
262		M.2 Decoding alphanumeric data	
263	Ν	Acknowledgement	216

266 Foreword

267 Abstract

The EPC Tag Data Standard defines the Electronic Product Code™, and also specifies the memory contents of
 Gen 2 RFID Tags. In more detail, the Tag Data Standard covers two broad areas:

- The specification of the Electronic Product Code, including its representation at various levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing codes.
- The specification of data that is carried on Gen 2 RFID tags, including the EPC, "user memory" data, control information, and tag manufacture information.

274 Audience for this document

- 275 The target audience for this specification includes:
- 276 EPC Middleware vendors
- 277 RFID Tag users and encoders
- 278 Reader vendors
- 279 Application developers
- 280 System integrators

281 Differences from EPC Tag Data Standard Version 1.6

The EPC Tag Data Standard Version 1.7 is fully backward-compatible with EPC Tag Data Standard Version1.6.

- The EPC Tag Data Standard Version 1.7 includes these new or enhanced features:
- A new EPC Scheme, the Component and Part Identifier (CPI) scheme, has been added ;
- 286 Various typographical errors have been corrected.

287 Differences from EPC Tag Data Standard Version 1.7

- The EPC Tag Data Standard Version 1.8 is fully backward-compatible with EPC Tag Data Standard Version 1.7.
- 290 The EPC Tag Data Standard Version 1.8 includes the following enhacements:
- 291 The GIAI EPC Scheme has been allocated an additional Filter Value, "Rail Vehicle".

292 Differences from EPC Tag Data Standard Version 1.8

The EPC Tag Data Standard Version 1.9 is fully backward-compatible with EPC Tag Data Standard Version1.8.

- 295 The EPC Tag Data Standard Version 1.9 includes the following enhancements:
- A new EPC Class URI to represent the combination of a GTIN plus a Batch/Lot (LGTIN) has been added.
 - A new EPC Scheme the SerialisedGlobal Coupon Number (SGCN), has been added along with the SGCN-96 binary encoding.
- 300A new EPC Scheme, the Global Service Relation Number Provider" (GSRNP), has been added
along with the GSRNP-96 binary encoding. This corresponds to the addition of AI (8017) to
[GS1GS14.0];

303 304 305		The existing GSRN EPC Scheme is retitled Global Service Relation Number – Recipient to harmonise with [GS1GS14.0] update to AI (8018). The EPC Scheme name and URI is unchanged, however, to preserve backward compatibility with TDS 1.8 and earlier.
306 307 308		New AIs are added to the Packed Objects ID Table for EPC User Memory, to harmonise TDS with [GS1GS14.0], thereby ensuring that all AIs can be encoded in both barcode and RFID data carriers:
309		Packaging Component Number: AI (243)
310		Global Coupon Number: AI (255)
311		Country Subdivision of Origin: AI (427)
312		National Healthcare Reimbursement Number (NHRN) – Germany PZN: AI (710)
313		National Healthcare Reimbursement Number (NHRN) – France CIP: AI (711)
314		National Healthcare Reimbursement Number (NHRN) – Spain CN: AI (712)
315		National Healthcare Reimbursement Number (NHRN) – Brazil DRN: AI (713)
316		Component Part Identifier (8010)
317		Component / Part Identifier Serial Number (8011)
318		 Global Service Relation Number – Provider: AI (8017)
319		Service Relation Instance Number (SRIN): AI (8019)
320		Extended Packaging URL: AI (8200)
321 322	1.1	DEPRECATED "Secondary data for specific health industry products" AI (22) in the Packed Objects ID Table for EPC User Memory, to harmonise TDS with the GS1 General Specifications;
323 324 325 326	1	A new EPC binary encoding for the Global Document Type Identifier, GDTI-174, is to accommodate all values of the GDTI serial number permitted by [GS1GS14.0] $(1 - 17)$ alphanumeric characters, compared to $1 - 17$ numeric characters permitted in earlier versions of the GS1 General Specifications).
327 328	1.1	DEPRECATED the GDTI-113 EPC Binary Encoding; the GDTI-174 Binary Encoding should be used instead
329		Updated all [GS1GS14.0] version and section references;
330		Marked Attribute Bits information as pertaining only to Gen2 v 1.x tags;
331		Changed "ItemReference" to "ItemRefAndIndicator" in SGTIN general syntax;
332 333	1.1	Corrected provision on number of characters in "String" Encoding method's validity test from "less than b/7" to "less than or equal to b/7";
334	1.1	Corrected various errata.
335	Differen	ces from EPC Tag Data Standard Version 1.9
336 337		e EPC Tag Data Standard Version 1.10 is fully backward-compatible with EPC Tag Data Standard rsion 1.9.
338	Th	e EPC Tag Data Standard Version 1.10 includes the following enhancements:
339		New EPC URIs have been added to represent the following identifiers:
340		□ GINC
341		□ GSIN
342		BIC container code
343 344	1.1	Clarification has been added regarding SGTIN Filter Values "Full Case for Transport" and "Unit Load";
345	•	GDTI EPC Scheme has been allocated an additional Filter Value, "Travel Document";

	•	ADI EPC Scheme has been allocated a number of additional Filter Values, to harmonise with the 2015 release of ATA's Spec 2000;
	•	New AIs have been added to the Packed Objects ID Table for EPC User Memory, to harmonise TDS with [GS1GS17.0], thereby ensuring that all AIs can be encoded in both barcode and RFID data carriers:
		Sell by date: AI (16)
		Percentage discount of a coupon: AI (394n)
		Catch area: AI (7005)
		First freeze date: AI (7006)
		Harvest date: AI (7007)
		Species for fishery purposes: AI (7008)
		Fishing gear type: AI (7009)
		Production method: AI (7010)
		Software version: AI (8012)
		Loyalty points of a coupon: AI (8111)
	•	"GS1-128 Coupon Extended Code - NSC" AI (8102) has been marked as DEPRECATED;
	•	Format string for "International Bank Account Number (IBAN)" AI (8007) has been corrected;
	•	SGCN coding table has been corrected to include the SGCN header;
	•	Short Tag Identifcation within the TID Memory Bank has been updated to align with [UHFC1G2v2.0];
	•	Correspondence between EPCs and GS1 Keys has been updated to accommodate 4- and 5-digit GCPs, to align with [GS1GS17.0];
	•	Abstract, Audience and overview of Differences have been moved to a new "Foreword" section added after the Table of Contents.
Differ	en	ces from EPC Tag Data Standard (TDS) Version 1.10
	TD	S v 1.11 is fully backward-compatible with TDS v 1.10.
	TD	S v 1.11 includes the following enhancements:
	•	A new EPC Scheme, the Individual Trade Item Piece (ITIP), has been added along with the ITIP-110 and ITIP-212 binary encodings.
	•	The following new AIs have been added to the Packed Objects ID Table for EPC User Memory, to harmonise TDS with [GS1GS17.1], thereby ensuring that all AIs can be encoded in both barcode and RFID data carriers:
		 GLN of the production or service location: AI (416)
		Refurbishment lot ID: AI (7020)
		Functional status: AI (7021)
		Revision status: AI (7022)
		 Global Individual Asset Identifier (GIAI) of an Assembly: AI (7023)
	•	Format string for AIs 91-99 has been revised to allow for up to 90 characters (previously up to 30), in order to harmonise TDS with [GS1GS17.0];
		NOTE: To harmonise with GenSpecs v 17.1, which have extended the length AIs 91-99 to 90 (previously 30) alphanumeric characters, TDS v 1.11 has extended the string format of AIs 91-99 (encoded by means of Packed Objects in User Memory) from 1*30an (alphanumeric, length 1 to 30) to 1*an (alphanumeric, no upper bound).

389	This revision to tables F.1 and F.2 of TDS is fully backward compatible, allowing a tag written
390	per TDS 1.10 to decode properly per TDS 1.11. It is also mostly forward compatible, allowing
391	a tag written per TDS 1.11 to decode properly per TDS 1.10, as long as the length of AI
392	91,,99 is 30 or fewer. A tag written per TDS 1.10 with a longer value for one of these AIs
393	may signal an error indicating that the value is too long, but other AIs will decode properly.
394	Another minor issue is that the encoding algorithm will no longer enforce an upper limit on
395	the length of an encoded value, so it will be possible to encode an AI 91-99 character value
396	that is too long per the GenSpecs (e.g. 100 character). Therefore, to ensure compliance
397	with the GenSpecs and rest of the GS1 System, AI 91-99 character values encoded
398	in User Memory should not exceed 90 characters in length.

Marked all EPC binary headers previously reserved for 64-bit encodings as now "Reserved for 64-bit encodings.
 Future Use" (RFU), reflecting the July 2009 sunsetting of the 64-bit encodings.

401 Differences from EPC Tag Data Standard (TDS) Version 1.11

402	TDS v 1.12 is fully backward-compatible with TDS v 1.11.
403	TDS v 1.12 includes the following enhancements:
404	The following EPC Scheme has been been added:
405	o UPUI
406	o PGLN
407 408	 Guidance has been added (to section 7) to determine the length of the EPC CompanyPrefix component for individually assigned GS1 Keys
409 410	 "Fixed Width Integer" encoding and decoding methods have been added (to section 14) in support of ITIP,
411 412	 Coding method for the Piece and Total components of the ITIP has been corrected from "String" to "Fixed Width Integer"
413 414 415	 The following new AIs have been added to the Packed Objects ID Table for EPC User Memory, to harmonise TDS with [GS1GS19.1], thereby ensuring that all AIs can be encoded in both barcode and RFID data carriers:
416	 Consumer product variant: AI (22)
417	Third party controlled, serialised extension of GTIN (TPX): AI (235)
418	 Global Location Number of Party: AI (417)
419	 National Healthcare Reimbursement Number (NHRN) – Portugal AIM: AI (714)
420	 GS1 UIC with Extension 1 and Importer index (per EU 2018/574): AI (7040)
421	 Global Model Number: AI (8013)
422	 Identification of pieces of a trade item (ITIP) contained in a logistics unit: AI (8026)
423	 Paperless coupon code identification for use in North America: AI (8112)

424 Status of this document

- 425This section describes the status of this document at the time of its publication. Other documents426may supersede this document. The latest status of this document series is maintained at GS1. See427http://www.gs1.org/standards for more information.
- 428 This version of the EPC Tag Data Standard 1.12 has been ratified and has completed all other GSMP 429 steps including IP review.
- 430

433 434

435

436

437

460

461

462 463

464

465

431 **1** Introduction

The EPC Tag Data Standard defines the Electronic Product Code™, and also specifies the memory contents of Gen 2 RFID Tags. In more detail, the Tag Data Standard covers two broad areas:

- The specification of the Electronic Product Code, including its representation at various levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing codes.
- The specification of data that is carried on Gen 2 RFID tags, including the EPC, "user memory" data, control information, and tag manufacture information.

The Electronic Product Code is a universal identifier for any physical object. It is used in information systems that need to track or otherwise refer to physical objects. A very large subset of applications that use the Electronic Product Code also rely upon RFID Tags as a data carrier. For this reason, a large part of the Tag Data Standard is concerned with the encoding of Electronic Product Codes onto RFID tags, along with defining the standards for other data apart from the EPC that may be stored on a Gen 2 RFID tag.

Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) overlap in the parts where the encoding of the EPC onto RFID tags is discussed. Nevertheless, it should always be remembered that the EPC and RFID are not at all synonymous: EPC is an identifier, and RFID is a data carrier. RFID tags contain other data besides EPC identifiers (and in some applications may not carry an EPC identifier at all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts including the URI form used within information systems, printed human-readable EPC URIs, and EPC identifiers derived from barcode data following the procedures in this standard).

451 2 Terminology and typographical conventions

- 452 Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, NEED NOT, 453 CAN, and CANNOT are to be interpreted as specified in Annex <u>G</u> of the ISO/IEC Directives, Part 2, 454 2001, 4th edition [ISODir2]. When used in this way, these terms will always be shown in ALL CAPS; 455 when these words appear in ordinary typeface they are intended to have their ordinary English 456 meaning.
- 457 All sections of this document, with the exception of Section <u>1</u> are normative, except where explicitly 458 noted as non-normative.
- 459 The following typographical conventions are used throughout the document:
 - ALL CAPS type is used for the special terms from [ISODir2] enumerated above.
 - Monospace type is used for illustrations of identifiers and other character strings that exist within information systems.
 - Placeholders for changes that need to be made to this document prior to its reaching the final stage of approved EPCglobal specification are prefixed by a rightward-facing arrowhead, as this paragraph is.

466The term "Gen 2 RFID Tag" (or just "Gen 2 Tag") as used in this specification refers to any RFID tag467that conforms to the EPCglobal UHF Class 1 Generation 2 Air Interface, Version 1.2.0 or later468[UHFC1G2], as well as any RFID tag that conforms to another air interface standard that shares the469same memory map. Bitwise addresses within Gen 2 Tag memory banks are indicated using470hexadecimal numerals ending with a subscript "h"; for example, 20h denotes bit address47120 hexadecimal (32 decimal).

3 Overview of the Tag Data Standard

- 473 This section provides an overview of the Tag Data Standard and how the parts fit together.
- 474 The Tag Data Standard covers two broad areas:
- The specification of the Electronic Product Code, including its representation at various levels of
 the EPCglobal Architecture and its correspondence to GS1 keys and other existing codes.

478

 The specification of data that is carried on Gen 2 RFID tags, including the EPC, "user memory" data, control information, and tag manufacture information.

The Electronic Product Code is a universal identifier for any physical object. It is used in information systems that need to track or otherwise refer to physical objects. Within computer systems, including electronic documents, databases, and electronic messages, the EPC takes the form of an Internet Uniform Resource Identifier (URI). This is true regardless of whether the EPC was originally read from an RFID tag or some other kind of data carrier. This URI is called the "Pure Identity EPC URI." The following is an example of a Pure Identity EPC URI:

- 485 urn:epc:id:sgtin:0614141.112345.400
- 486 A very large subset of applications that use the Electronic Product Code also rely upon RFID Tags as a data carrier. RFID is often a very appropriate data carrier technology to use for applications 487 involving visibility of physical objects, because RFID permits data to be physically attached to an 488 object such that reading the data is minimally invasive to material handling processes. For this 489 reason, a large part of the Tag Data Standard is concerned with the encoding of Electronic Product 490 491 Codes onto RFID tags, along with defining the standards for other data apart from the EPC that may 492 be stored on a Gen 2 RFID tag. Owing to memory limitations of RFID tags, the EPC is not stored in 493 URI form on the tag, but is instead encoded into a compact binary representation. This is called the "EPC Binary Encoding." 494
- Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) overlap in the parts where the encoding of the EPC onto RFID tags is discussed. Nevertheless, it should always be remembered that the EPC and RFID are not at all synonymous: EPC is an identifier, and RFID is a data carrier. RFID tags contain other data besides EPC identifiers (and in some applications may not carry an EPC identifier at all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts currently including the URI form used within information systems, printed human-readable EPC URIs, and EPC identifiers derived from barcode data following the procedures in this standard).
- 502 The term "Electronic Product Code" (or "EPC") is used when referring to the EPC regardless of the 503 concrete form used to represent it. The term "Pure Identity EPC URI" is used to refer specifically to 504 the text form the EPC takes within computer systems, including electronic documents, databases, 505 and electronic messages. The term "EPC Binary Encoding" is used specifically to refer to the form 506 the EPC takes within the memory of RFID tags.
- 507The following diagram illustrates the parts of the Tag Data Standard and how they fit together. (The508colours in the diagram refer to the types of data that may be stored on RFID tags, explained further509in Section <u>9.1</u>.)



Figure 3-1 Organisation of the EPC Tag Data Standard

- 511
- 512The first few sections define those aspects of the Electronic Product Code that are independent from513RFID.
- 514 Section <u>4</u> provides an overview of the Electronic Product Code (EPC) and how it relates to other GS1 515 standards and the GS1 General Specifications.
- 516 Section <u>6</u> specifies the Pure Identity EPC URI form of the EPC. This is a textual form of the EPC, and 517 is recommended for use in business applications and business documents as a universal identifier 518 for any physical object for which visibility information is kept. In particular, this form is what is used 519 as the "what" dimension of visibility data in the EPC Information Services (EPCIS) specification, and 520 is also available as an output from the Application Level Events (ALE) interface.
- 521 Section <u>7</u> specifies the correspondence between Pure Identity EPC URIs as defined in Section <u>6</u> and 522 barcode element strings as defined in the GS1 General Specifications.

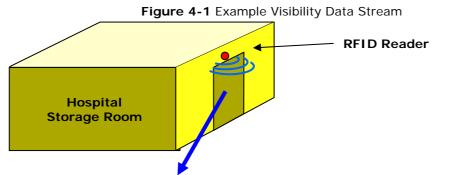
523 524	Section 7.9 specifies the Pure Identity Pattern URI, which is a syntax for representing sets of related EPCs, such as all EPCs for a given trade item regardless of serial number.
525 526	The remaining sections address topics that are specific to RFID, including RFID-specific forms of the EPC as well as other data apart from the EPC that may be stored on Gen 2 RFID tags.
527	Section <u>9</u> provides general information about the memory structure of Gen 2 RFID Tags.
528 529 530 531 532 533 534 535 536 537 538 539	Sections <u>10</u> and <u>11</u> specify "control" information that is stored in the EPC memory bank of Gen 2 tags along with a binary-encoded form of the EPC (EPC Binary Encoding). Control information is used by RFID data capture applications to guide the data capture process by providing hints about what kind of object the tag is affixed to. Control information is not part of the EPC, and does comprise any part of the unique identity of a tagged object. There are two kinds of control information specified: the "filter value" (Section <u>10</u>) that makes it easier to read desired tags in an environment where there may be other tags present, such as reading a pallet tag in the presence of a large number of item-level tags, and "attribute bits" (Section <u>11</u>) that provide additional special attribute information such as alerting to the presence of hazardous material. The same "attribute bits" are available regardless of what kind of EPC is used, whereas the available "filter values" are different depending on the type of EPC (and with certain types of EPCs, no filter value is available at all).
540 541	Section <u>12</u> specifies the "tag" Uniform Resource Identifiers, which is a compact string representation for the entire data content of the EPC memory bank of Gen 2 RFID Tags. This data content includes

- for the entire data content of the EPC memory bank of Gen 2 RFID Tags. This data content includes the EPC together with "control" information as defined in Sections <u>10</u> and <u>11</u>. In the "tag" URI, the EPC content of the EPC memory bank is represented in a form similar to the Pure Identity EPC URI. Unlike the Pure Identity EPC URI, however, the "tag" URI also includes the control information content of the EPC memory bank. The "tag" URI form is recommended for use in capture applications that need to read control information in order to capture data correctly, or that need to write the full contents of the EPC memory bank. "Tag" URIs are used in the Application Level Events (ALE) interface, both as an input (when writing tags) and as an output (when reading tags).
- 549 Section <u>13</u> specifies the EPC Tag Pattern URI, which is a syntax for representing sets of related RFID 550 tags based on their EPC content, such as all tags containing EPCs for a given range of serial 551 numbers for a given trade item.
- 552Sections <u>14</u> and <u>14.5.1.2</u> specify the contents of the EPC memory bank of a Gen 2 RFID tag at the553bit level. Section <u>14</u> specifies how to translate between the "tag" URI and the EPC Binary Encoding.554The binary encoding is a bit-level representation of what is actually stored on the tag, and is also555what is carried via the Low Level Reader Protocol (LLRP) interface. Section <u>14.5.1.2</u> specifies how556this binary encoding is combined with attribute bits and other control information in the EPC557memory bank.
- 558 Section <u>16</u> specifies the binary encoding of the TID memory bank of Gen 2 RFID Tags.
- 559 Section <u>17</u> specifies the binary encoding of the User memory bank of Gen 2 RFID Tags.

The Electronic Product Code: A universal identifier for physical objects

- 562The Electronic Product Code is designed to facilitate business processes and applications that need563to manipulate visibility data data about observations of physical objects. The EPC is a universal564identifier that provides a unique identity for any physical object. The EPC is designed to be unique565across all physical objects in the world, over all time, and across all categories of physical objects. It566is expressly intended for use by business applications that need to track all categories of physical567objects, whatever they may be.
- 568By contrast, GS1 identification keys defined in the GS1 General Specifications [GS1GS] can identify569categories of objects (GTIN), unique objects (SSCC, GLN, GIAI, GSRN, CPID), or a hybrid (GRAI,570GDTI, GCN) that may identify either categories or unique objects depending on the absence or571presence of a serial number. (Two other keys, GINC and GSIN, identify logical groupings, not572physical objects.) The GTIN, as the only category identification key, requires a separate serial573number to uniquely identify an object but that serial number is not considered part of the574identification key.

579


590

There is a well-defined correspondence between EPCs and GS1 keys. This allows any physical object 575 that is already identified by a GS1 key (or GS1 key + serial number combination) to be used in an 576 EPC context where any category of physical object may be observed. Likewise, it allows EPC data 578 captured in a broad visibility context to be correlated with other business data that is specific to the category of object involved and which uses GS1 keys.

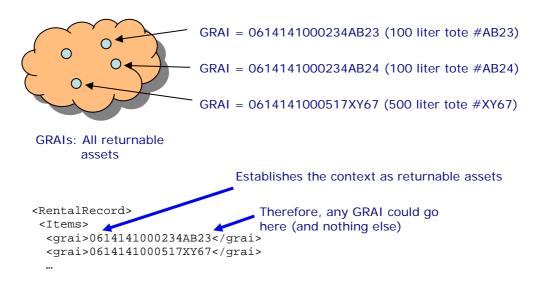
580 The remainder of this section elaborates on these points.

The need for a universal identifier: an example 581 4.1

The following example illustrates how visibility data arises, and the role the EPC plays as a unique 582 583 identifier for any physical object. In this example, there is a storage room in a hospital that holds 584 radioactive samples, among other things. The hospital safety officer needs to track what things have been in the storage room and for how long, in order to ensure that exposure is kept within 585 acceptable limits. Each physical object that might enter the storage room is given a unique 586 Electronic Product Code, which is encoded onto an RFID Tag affixed to the object. An RFID reader 587 positioned at the storage room door generates visibility data as objects enter and exit the room, as 588 illustrated below. 589

		Visibility Data Stream at Storage Room E	Entrance
Time	In / Out	EPC	Comment
8:23am	In	urn: epc: id: sgtin: 0614141.012345.62852	10cc Syringe #62852 (trade item)
8:52am	In	urn:epc:id:grai:0614141.54321.2528	Pharma Tote #2528 (reusable transport)
8:59am	In	urn: epc: id: sgtin: 0614141.012345.1542	10cc Syringe #1542 (trade item)
9:02am	Out	urn: epc: id: giai: 0614141.17320508	Infusion Pump #52 (fixed asset)
9:32am	In	urn: epc: id: gsrn: 0614141.0000010253	Nurse Jones (service relation)
9:42am	Out	urn: epc: id: gsrn: 0614141.0000010253	Nurse Jones (service relation)
9:52am	In	urn: epc: id: gdti: 0614141.00001.1618034	Patient Smith's chart (document)

- 592 As the illustration shows, the data stream of interest to the safety officer is a series of events, each 593 identifying a specific physical object and when it entered or exited the room. The unique EPC for 594 each object is an identifier that may be used to drive the business process. In this example, the EPC 595 (in Pure Identity EPC URI form) would be a primary key of a database that tracks the accumulated exposure for each physical object; each entry/exit event pair for a given object would be used to 596 update the accumulated exposure database. 597
- 598 This example illustrates how the EPC is a single, universal identifier for any physical object. The 599 items being tracked here include all kinds of things: trade items, reusable transports, fixed assets, service relations, documents, among others that might occur. By using the EPC, the application can 600 use a single identifier to refer to any physical object, and it is not necessary to make a special case 601 602 for each category of thing.

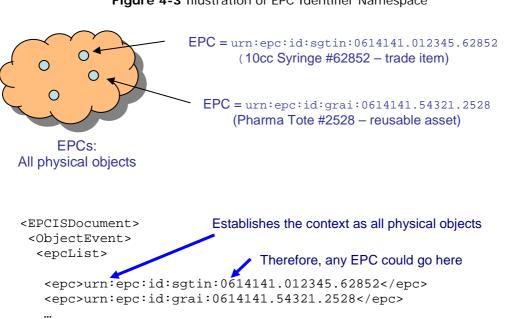


4.2 Use of identifiers in a Business Data Context

604 Generally speaking, an identifier is a member of set (or "namespace") of strings (names), such that 605 each identifier is associated with a specific thing or concept in the real world. Identifiers are used 606 within information systems to refer to the real world thing or concept in question. An identifier may 607 occur in an electronic record or file, in a database, in an electronic message, or any other data 608 context. In any given context, the producer and consumer must agree on which namespace of 609 identifiers is to be used; within that context, any identifier belonging to that namespace may be 610 used.

611The keys defined in the GS1 General Specifications [GS17.0] are each a namespace of identifiers for612a particular category of real-world entity. For example, the Global Returnable Asset Identifier (GRAI)613is a key that is used to identify returnable assets, such as plastic totes and pallet skids. The set of614GRAI codes can be thought of as identifiers for the members of the set "all returnable assets." A615GRAI code may be used in a context where only returnable assets are expected; e.g., in a rental616agreement from a moving services company that rents returnable plastic crates to customers to617pack during a move. This is illustrated below.

Figure 4-2 Illustration of GRAI Identifier Namespace

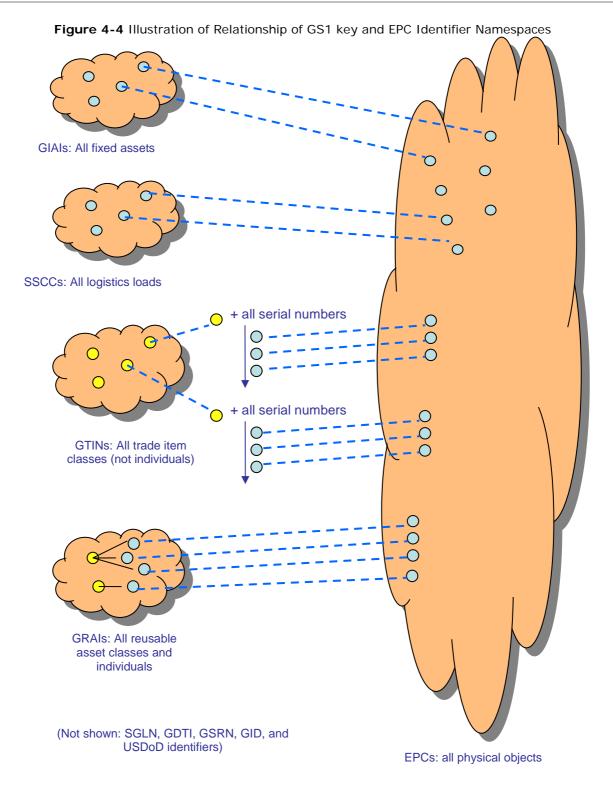

619 620 621

622

618

The upper part of the figure illustrates the GRAI identifier namespace. The lower part of the figure shows how a GRAI might be used in the context of a rental agreement, where only a GRAI is expected.

623


625 In contrast, the EPC namespace is a space of identifiers for any physical object. The set of EPCs can be thought of as identifiers for the members of the set "all physical objects." EPCs are used in 626 contexts where any type of physical object may appear, such as in the set of observations arising in 627 the hospital storage room example above. Note that the EPC URI as illustrated in Figure 4-3 628 629 includes strings such as sgtin, grai, and so on as part of the EPC URI identifier. This is in contrast to GS1 Keys, where no such indication is part of the key itself; instead, this is indicated 630 outside of the key, such as in the XML element name <grai> in the example in Figure 4-2 in the 631 632 Application Identifier (AI) that accompanies a GS1 key in a GS1 element string.

633 4.3 Relationship between EPCs and GS1 keys

634There is a well-defined relationship between EPCs and GS1 keys. For each GS1 key that denotes an635individual physical object, there is a corresponding EPC, including both an EPC URI and a binary636encoding for use in RFID tags. In addition, each GS1 key that denotes a class or grouping of637physical objects has a corresponding URI form. These correspondences are formally defined by638conversion rules specified in Section Z, which define how to map a GS1 key to the corresponding639EPC value and vice versa. The well-defined correspondence between GS1 keys and EPCs allows for640seamless migration of data between GS1 key and EPC contexts as necessary.

Figure 4-3 Illustration of EPC Identifier Namespace

642

- 643
- 644 645 646

647

- Not every GS1 key corresponds to an EPC, nor vice versa. Specifically:
 - A Global Trade Item Number (GTIN) by itself does not correspond to an EPC, because a GTIN identifies a *class* of trade items, not an individual trade item. The combination of a GTIN and a unique serial number, however, *does* correspond to an EPC. This combination is called a Serialised Global Trade Item Number, or SGTIN. The GS1 General Specifications do not define the SGTIN as a GS1 key.

- In the GS1 General Specifications, the Global Returnable Asset Identifier (GRAI) can be used to identify either a *class* of returnable assets, or an individual returnable asset, depending on whether the optional serial number is included. Only the form that includes a serial number, and thus identifies an individual, has a corresponding EPC. The same is true for the Global Document Type Identifier (GDTI) and the Global Coupon Number (GCN) hereafter, in this context, "Serialised Global Coupon Number (SGCN)".
- There is an EPC corresponding to each Global Location Number (GLN), and there is also an EPC corresponding to each combination of a GLN with an extension component. Collectively, these EPCs are referred to as SGLNs.¹
- EPCs include identifiers for which there is no corresponding GS1 key. These include the General Identifier and the US Department of Defense identifier.
- 660 The following table summarises the EPC schemes defined in this specification and their 661 correspondence to GS1 keys.

662 **Table 4-1** EPC Schemes and Corresponding GS1 keys

EPC Scheme	Tag Encodings	Corresponding GS1 key	Typical use
sgtin	sgtin-96 sgtin-198	GTIN key (plus added serial number)	Trade item
SSCC	sscc-96	SSCC	Pallet load or other logistics unit load
sgln	sgln-96 sgln-195	GLN of physical location (with or without additional extension)	Location
grai	grai-96 grai-170	GRAI (serial number mandatory)	Returnable/reusable asset
giai	giai-96 giai-202	GIAI	Fixed asset
gsrn	gsrn-96	GSRN – Recipient	Hospital admission or club membership
gsrnp	gsrnp-96	GSRN for service provider	Medical caregiver or loyalty club
gdti	gdti-96 <i>gdti-113</i> (DEPRECATED) gdti-174	GDTI (serial number mandatory)	Document
срі	cpi-96 cpi-var	[none]	Technical industries (e.g. automotive) - components and parts
sgcn	sgcn-96	GCN (serial number mandatory)	Coupon
ginc	[none]	GINC	Logical grouping of goods intended for transport as a whole, assigned by a freight forwarder
gsin	[none]	GSIN	Logical grouping of logistic units travelling under one despatch advice and/or bill of lading

¹ Note that in this context, the letter "S" does not stand for "serialized" as it does in SGTIN. See Section <u>6.3.3</u> for an explanation.

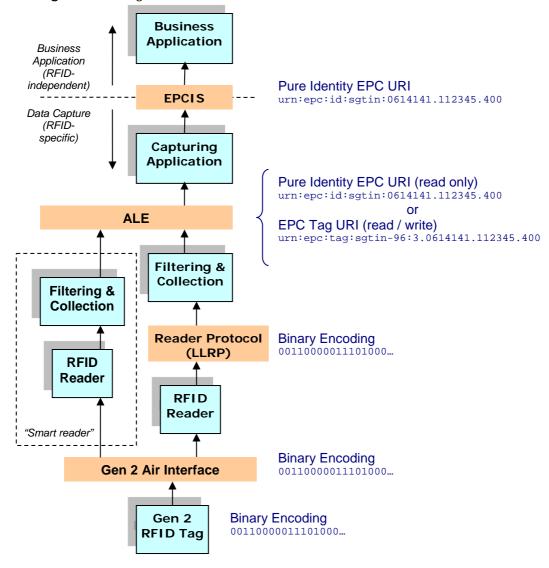
EPC Scheme	Tag Encodings	Corresponding GS1 key	Typical use
itip	itip-110 itip-212	(8006) + (21)	One of multiple pieces comprising, and subordinate to, a whole (which is, in turn, identified by an SGTIN or the combination of AIs 01 + 21).
upui	[none]	GTIN + TPX	Pack identification to combat illicit trade
pgIn	[none]	Party GLN	Identification of economic operator; identification of owning party or possessing party in the Chain of Custody (CoC) / Chain of Ownership (CoO)
gid	gid-96	[none]	Unspecified
usdod	usdod-96	[none]	US Dept of Defense supply chain
adi	adi-var	[none]	Aerospace and defense – aircraft and other parts and items
bic	[none]	[none]	Intermodal shipping containers

4.4 Use of the EPC in EPCglobal Architecture Framework

664The EPCglobal Architecture Framework [EPCAF] is a collection of hardware, software, and data665standards, together with shared network services that can be operated by EPCglobal, its delegates666or third party providers in the marketplace, all in service of a common goal of enhancing business667flows and computer applications through the use of Electronic Product Codes (EPCs). The EPCglobal668Architecture Framework includes software standards at various levels of abstraction, from low-level669interfaces to RFID reader devices all the way up to the business application level.

The EPC and related structures specified herein are intended for use at different levels within the EPCglobal architecture framework. Specifically:

- Pure Identity EPC URI: The primary representation of an Electronic Product Code is as an Internet Uniform Resource Identifier (URI) called the Pure Identity EPC URI. The Pure Identity EPC URI is the preferred way to denote a specific physical object within business applications. The pure identity URI may also be used at the data capture level when the EPC is to be read from an RFID tag or other data carrier, in a situation where the additional "control" information present on an RFID tag is not needed.
 - EPC Tag URI: The EPC memory bank of a Gen 2 RFID Tag contains the EPC plus additional "control information" that is used to guide the process of data capture from RFID tags. The EPC Tag URI is a URI string that denotes a specific EPC together with specific settings for the control information found in the EPC memory bank. In other words, the EPC Tag URI is a text equivalent of the entire EPC memory bank contents. The EPC Tag URI is typically used at the data capture level when reading from an RFID tag in a situation where the control information is of interest to the capturing application. It is also used when writing the EPC memory bank of an RFID tag, in order to fully specify the contents to be written.
- Binary Encoding: The EPC memory bank of a Gen 2 RFID Tag actually contains a compressed encoding of the EPC and additional "control information" in a compact binary form. There is a 1-to-1 translation between EPC Tag URIs and the binary contents of a Gen 2 RFID Tag. Normally, the binary encoding is only encountered at a very low level of software or hardware, and is translated to the EPC Tag URI or Pure Identity EPC URI form before being presented to application logic.
- 692Note that the Pure Identity EPC URI is independent of RFID, while the EPC Tag URI and the Binary693Encoding are specific to Gen 2 RFID Tags because they include RFID-specific "control information" in694addition to the unique EPC identifier.



The figure below illustrates where these structures normally occur in relation to the layers of the EPCglobal Architecture Framework.

696 697

695

Figure 4-5 EPCglobal Architecture Framework and EPC Structures Used at Each Level

698

699 5 Common grammar elements

700 The syntax of various URI forms defined herein is specified via BNF grammars. The following 701 grammar elements are used throughout this specification.

```
702
              NumericComponent ::= ZeroComponent | NonZeroComponent
              ZeroComponent ::= "0"
703
704
              NonZeroComponent ::= NonZeroDigit Digit*
705
              PaddedNumericComponent ::= Digit+
706
              PaddedNumericComponentOrEmpty ::= Digit*
707
              Digit ::= "0" | NonZeroDigit
708
              NonZeroDigit ::= "1" | "2" | "3"
                                                     <u>~4″</u>
                        »5″ °6″ °7″
709
                                              <u>8″</u>
                                                     <u>~9″</u>
              UpperAlpha ::= "A"
                                      "В″
                                             "C″
                                                    "D″
                                                                 "F″
710
                                                          `Έ″
                                                                      "G"
                               `'Ι″
                                      "J"
                                             "K″
                                                    ۳L″
                                                                 "N″
711
                         "H"
                                                          "M"
                         "O"
                               "P″
                                      "O"
                                             "R″
                                                    "S″
712
                                                          "Τ″
                                                                 "U"
713
                         "V"
                               "W"
                                      "Χ"
                                             "Υ″
                                                    "Ζ″
```



```
714
                                                                        "g″
                               "a″
                                      "b″
                                             "C″
                                                    "d"
                                                           "e"
                                                                 "f″
              LowerAlpha ::=
                                      "j″
715
                         "h″
                                ۳i″
                                             "k″
                                                    <u>"1</u>"
                                                           "m″
                                                                 "n″
716
                         "o"
                                "p″
                                      "q″
                                             "r"
                                                    "s"
                                                           "t"
                                                                 "u"
717
                         "v"
                               "w"
                                      "x"
                                             "у″
                                                    "z″
              OtherChar ::= "!"
                                     w i ii
                                            " ( "
718
                                                   ")"
                                                         `` * ″
                                                                " + "
719
                     ``; "
                                            " = "
                                                   w
                                                     "
720
              UpperHexChar ::= Digit | "A" |
                                                  `В″
                                                        "C″
                                                               "D"
                                                                      ΥE″
              HexComponent ::= UpperHexChar+
721
722
              HexComponentOrEmpty ::= UpperHexChar*
723
              Escape ::= "%" HexChar HexChar
              HexChar ::= UpperHexChar | "a" | "b" | "c" | "d" | "e" | "f"
724
725
              GS3A3Char ::= Digit | UpperAlpha | LowerAlpha | OtherChar
726
                     Escape
              GS3A3Component ::= GS3A3Char+
727
              CPRefChar ::= Digit | UpperAlpha | "-" | "%2F" | "%23"
728
729
              CPRefComponent ::= CPRefChar+
```

- 730 The syntactic construct GS3A3Component is used to represent fields of GS1 codes that permit 731 alphanumeric and other characters as specified in Figure 7.12-1 of the GS1 General Specifications (see Appendix <u>A</u>.) Owing to restrictions on URN syntax as defined by [RFC2141], not all characters 732 permitted in the GS1 General Specifications may be represented directly in a URN. Specifically, the 733 characters " (double quote), % (percent), & (ampersand), / (forward slash), < (less than), > 734 735 (greater than), and ? (guestion mark) are permitted in the GS1 General Specifications but may not be included directly in a URN. To represent one of these characters in a URN, escape notation must 736 be used in which the character is represented by a percent sign, followed by two hexadecimal digits 737 that give the ASCII character code for the character. 738
- 739The syntactic construct CPRefComponent is used to represent fields that permit upper-case740alphanumeric and the characters hyphen, forward slash, and pound / number sign. Owing to741restrictions on URN syntax as defined by [RFC2141], not all of these characters may be represented742directly in a URN. Specifically, the characters # (pound / number sign) and / (forward slash) may743not be included directly in a URN. To represent one of these characters in a URN, escape notation744must be used in which the character is represented by a percent sign, followed by two hexadecimal745digits that give the ASCII character code for the character.

746 **6 EPC URI**

- 747 This section specifies the "pure identity URI" form of the EPC, or simply the "EPC URI." The EPC URI 748 is the preferred way within an information system to denote a specific physical object.
- The EPC URI is a string having the following form:
- 750 urn:epc:id:scheme:component1.component2....
- 751where scheme names an EPC scheme, and component1, component2, and following parts are the752remainder of the EPC whose precise form depends on which EPC scheme is used. The available EPC753schemes are specified below in <u>Table 6-1</u> in Section <u>6.3</u>.
- An example of a specific EPC URI is the following, where the scheme is sgtin:
- 755 urn:epc:id:sgtin:0614141.112345.400
- Each EPC scheme provides a namespace of identifiers that can be used to identify physical objects
 of a particular type. Collectively, the EPC URIs from all schemes are unique identifiers for any type
 of physical object.

759 6.1 Use of the EPC URI

- 760 The EPC URI is the preferred way within an information system to denote a specific physical object.
- 761The structure of the EPC URI guarantees worldwide uniqueness of the EPC across all types of762physical objects and applications. In order to preserve worldwide uniqueness, each EPC URI must be

used in its entirety when a unique identifier is called for, and not broken into constituent parts nor
 the urn:epc:id: prefix abbreviated or dropped.

When asking the question "do these two data structures refer to the same physical object?", where each data structure uses an EPC URI to refer to a physical object, the question may be answered simply by comparing the full EPC URI strings as specified in [RFC3986], Section 6.2. In most cases, the "simple string comparison" method suffices, though if a URI contains percent-encoding triplets the hexadecimal digits may require case normalisation as described in [RFC3986], Section 6.2.2.1. The construction of the EPC URI guarantees uniqueness across all categories of objects, provided that the URI is used in its entirety.

- 772 In other situations, applications may wish to exploit the internal structure of an EPC URI for 773 purposes of filtering, selection, or distribution. For example, an application may wish to query a database for all records pertaining to instances of a specific product identified by a GTIN. This 774 amounts to querying for all EPCs whose GS1 Company Prefix and item reference components match 775 a given value, disregarding the serial number component. Another example is found in the Object 776 Name Service (ONS) [ONS1.0.1], which uses the first component of an EPC to delegate a query to a 777 "local ONS" operated by an individual company. This allows the ONS system to scale in a way that 778 779 would be quite difficult if all ONS records were stored in a flat database maintained by a single 780 organisation.
- While the internal structure of the EPC may be exploited for filtering, selection, and distribution as
 illustrated above, it is essential that the EPC URI be used in its entirety when used as a unique
 identifier.

784 6.2 Assignment of EPCs to physical objects

- The act of allocating a new EPC and associating it with a specific physical object is called "commissioning." It is the responsibility of applications and business processes that commission EPCs to ensure that the same EPC is never assigned to two different physical objects; that is, to ensure that commissioned EPCs are unique. Typically, commissioning applications will make use of databases that record which EPCs have already been commissioned and which are still available. For example, in an application that commissions SGTINs by assigning serial numbers sequentially, such a database might record the last serial number used for each base GTIN.
- Because visibility data and other business data that refers to EPCs may continue to exist long after a physical object ceases to exist, an EPC is ideally never reused to refer to a different physical object, even if the reuse takes place after the original object ceases to exist. There are certain situations, however, in which this is not possible; some of these are noted below. Therefore, applications that process historical data using EPCs should be prepared for the possibility that an EPC may be reused over time to refer to different physical objects, unless the application is known to operate in an environment where such reuse is prevented.
- 799Seven of the EPC schemes specified herein correspond to GS1 keys, and so EPCs from those800schemes are used to identify physical objects that have a corresponding GS1 key. When assigning801these types of EPCs to physical objects, all relevant GS1 rules must be followed in addition to the802rules specified herein. This includes the GS1 General Specifications [GS1GS], the GTIN Management803Standard, and so on. In particular, an EPC of this kind may only be commissioned by the licensee of804the GS1 Company Prefix that is part of the EPC, or has been delegated the authority to do so by the805GS1 Company Prefix licensee.

806 6.3 EPC URI syntax

807	This section specifies the syntax of an EPC URI.
808	The formal grammar for the EPC URI is as follows:
809 810 811	EPC-URI ::= SGTIN-URI SSCC-URI SGLN-URI GRAI-URI GIAI-URI GSRN-URI GDTI-URI CPI-URI SGCN-URI GINC-URI GSIN-URI ITIP-URI UPUI-URI PGLN-URI GID-URI DOD-URI ADI-URI BIC-URI
812	where the various alternatives on the right hand side are specified in the sections that follow.

813 Each EPC URI scheme is specified in one of the following subsections, as follows:

EPC Scheme	Specified In	Corresponding GS1 key	Typical use
sgtin	Section <u>6.3.1</u>	GTIN (with added serial number)	Trade item
SSCC	Section <u>6.3.2</u>	SSCC	Logistics unit
sgln	Section <u>6.3.3</u>	GLN (with or without additional extension)	Location ²
grai	Section <u>6.3.4</u>	GRAI (serial number mandatory)	Returnable asset
giai	Section <u>6.3.5</u>	GIAI	Fixed asset
gsrn	Section <u>6.3.6</u>	GSRN – Recipient	Hospital admission or club membership
gsrnp	Section <u>6.3.7</u>	GSRN – Provider	Medical caregiver or loyalty club
gdti	Section <u>6.3.8</u>	GDTI (serial number mandatory)	Document
cpi	Section <u>6.3.9</u>	[none]	Technical industries (e.g. automotive sector) for unique identification of parts and components
sgcn	Section <u>6.3.10</u>	GCN (serial number mandatory)	Coupon
ginc	Section <u>6.3.11</u>	GINC	Logical grouping of goods intended for transport as a whole, assigned by a freight forwarder
gsin	Section <u>6.3.12</u>	GSIN	Logical grouping of logistic units travelling under one despatch advice and/or bill of lading
itip	Section <u>6.3.13</u>	AI (8006) combined with AI (21)	One of multiple pieces comprising, and subordinate to, a whole (which is, in turn, identified by an SGTIN o the combination of AIs 0 + 21).
upui	Section <u>6.3.14</u>	GTIN and TPX	Pack identification to combat illicit trade
pgln	Section <u>6.3.15</u>	Party GLN – AI (417)	Identification of economi operator; identification of owning party or possessing party in the Chain of Custody (CoC) Chain of Ownership (CoC
qid	Section <u>6.3.16</u>	[none]	Unspecified

 2 While GLNs may be used to identify both locations and parties, the SGLN corresponds only to AI 414, which [GS1GS] specifies is to be used to identify locations, and not parties.

EPC Scheme	Specified In	Corresponding GS1 key	Typical use
usdod	Section <u>6.3.17</u>	[none]	US Dept of Defense supply chain
adi	Section <u>6.3.18</u>	[none]	Aerospace and Defense sector for unique identification of aircraft and other parts and items
bic	Section <u>6.3.19</u>	[none]	Intermodal shipping containers

815 6.3.1 Serialised Global Trade Item Number (SGTIN)

816The Serialised Global Trade Item Number EPC scheme is used to assign a unique identity to an817instance of a trade item, such as a specific instance of a product or SKU.

818 General syntax:

819 urn:epc:id:sgtin:CompanyPrefix.ItemRefAndIndicator.SerialNumber

820 Example:

821 urn:epc:id:sgtin:0614141.112345.400

822 Grammar:

834

835

836

- 823 SGTIN-URI ::= "urn:epc:id:sgtin:" SGTINURIBody
- 824 SGTINURIBody ::= 2*(PaddedNumericComponent ".") GS3A3Component
- The number of characters in the two PaddedNumericComponent fields must total 13 (not including any of the dot characters).
- The Serial Number field of the SGTIN-URI is expressed as a GS3A3Component, which permits the representation of all characters permitted in the Application Identifier 21 Serial Number according to the GS1 General Specifications.³ SGTIN-URIs that are derived from 96-bit tag encodings, however, will have Serial Numbers that consist only of digits and which have no leading zeros (unless the entire serial number consists of a single zero digit). These limitations are described in the encoding procedures, and in Section <u>12.3.1</u>.
- 833 The SGTIN consists of the following elements:
 - The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as the GS1 Company Prefix digits within a GS1 GTIN key. See Section <u>7.3.2</u> for the case of a GTIN-8.
- The Item Reference, assigned by the managing entity to a particular object class. The Item Reference as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item Reference digits, and treating the result as a single numeric string. See Section 7.3.2 for the case of a GTIN-8.
- The **Serial Number**, assigned by the managing entity to an individual object. The serial number is not part of the GTIN, but is formally a part of the SGTIN.

844 6.3.2 Serial Shipping Container Code (SSCC)

The Serial Shipping Container Code EPC scheme is used to assign a unique identity to a logistics handling unit, such as the aggregate contents of a shipping container or a pallet load.

³ As specified in Section <u>7.1</u> the serial number in the SGTIN is currently defined to be equivalent to AI 21 in the GS1 General Specifications. This equivalence is currently under discussion within GS1, and may be revised in future versions of the EPC Tag Data Standard.

847		General syntax:
848		urn:epc:id:sscc:CompanyPrefix.SerialReference
849		Example:
850		urn:epc:id:sscc:0614141.1234567890
851		Grammar:
852		SSCC-URI ::= "urn:epc:id:sscc:" SSCCURIBody
853		SSCCURIBody ::= PaddedNumericComponent "." PaddedNumericComponent
854 855		The number of characters in the two PaddedNumericComponent fields must total 17 (not including any of the dot characters).
856		The SSCC consists of the following elements:
857 858		The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 SSCC key.
859 860 861 862		The Serial Reference, assigned by the managing entity to a particular logistics handling unit. The Serial Reference as it appears in the EPC URI is derived from the SSCC by concatenating the Extension Digit of the SSCC and the Serial Reference digits, and treating the result as a single numeric string.
863	6.3.3	Global Location Number With or Without Extension (SGLN)
864 865		The SGLN EPC scheme is used to assign a unique identity to a physical location, such as a specific building or a specific unit of shelving within a warehouse.
866		General syntax:
867		urn:epc:id:sgln:CompanyPrefix.LocationReference.Extension
868		Example:
869		urn:epc:id:sgln:0614141.12345.400
870		Grammar:
871		SGLN-URI ::= "urn:epc:id:sgln:" SGLNURIBody
872 873		SGLNURIBody ::= PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." GS3A3Component
874 875		The number of characters in the two PaddedNumericComponent fields must total 12 (not including any of the dot characters).
876 877 878 879 880 881		The Extension field of the SGLN-URI is expressed as a GS3A3Component, which permits the representation of all characters permitted in the Application Identifier 254 Extension according to the GS1 General Specifications. SGLN-URIs that are derived from 96-bit tag encodings, however, will have Extensions that consist only of digits and which have no leading zeros (unless the entire extension consists of a single zero digit). These limitations are described in the encoding procedures, and in Section <u>12.3.1</u> .
882		The SGLN consists of the following elements:
883 884		 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GLN key.
885 886		 The Location Reference, assigned uniquely by the managing entity to a specific physical location.
887 888 889		 The GLN Extension, assigned by the managing entity to an individual unique location. If the entire GLN Extension is just a single zero digit, it indicates that the SGLN stands for a GLN, without an extension.

891

892 893

894

895

896

919

920

921 922 **Non-Normative**: Explanation (non-normative): Note that the letter "S" in the term "SGLN" does not stand for "serialised" as it does in SGTIN. This is because a GLN without an extension also identifies a unique location, as opposed to a class of locations, and so both GLN and GLN with extension may be considered as "serialised" identifiers. The term SGLN merely distinguishes the EPC form, which can be used either for a GLN by itself or GLN with extension, from the term GLN which always refers to the unextended GLN identifier. The letter "S" does not stand for anything.

897 6.3.4 Global Returnable Asset Identifier (GRAI)

898 The Global Returnable Asset Identifier EPC scheme is used to assign a unique identity to a specific 899 returnable asset, such as a reusable shipping container or a pallet skid.

900 General syntax:

- 901 urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber
- 902 Example:
- 903 urn:epc:id:grai:0614141.12345.400

904 Grammar:

- 905 GRAI-URI ::= "urn:epc:id:grai:" GRAIURIBody
- 906 GRAIURIBody ::= PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." 907 GS3A3Component
- 908 The number of characters in the two PaddedNumericComponent fields must total 12 (not including 909 any of the dot characters).
- 910The Serial Number field of the GRAI-URI is expressed as a GS3A3Component, which permits the911representation of all characters permitted in the Serial Number according to the GS1 General912Specifications. GRAI-URIs that are derived from 96-bit tag encodings, however, will have Serial913Numbers that consist only of digits and which have no leading zeros (unless the entire serial number914consists of a single zero digit). These limitations are described in the encoding procedures, and in915Section <u>12.3.1</u>.
- 916 The GRAI consists of the following elements:
- 917 The **GS1 Company Prefix**, assigned by GS1 to a managing entity. This is the same as the GS1
 918 Company Prefix digits within a GS1 GRAI key.
 - The **Asset Type**, assigned by the managing entity to a particular class of asset.
 - The Serial Number, assigned by the managing entity to an individual object. Because an EPC always refers to a specific physical object rather than an asset class, the serial number is mandatory in the GRAI-EPC.

923 6.3.5 Global Individual Asset Identifier (GIAI)

924The Global Individual Asset Identifier EPC scheme is used to assign a unique identity to a specific925asset, such as a forklift or a computer.

926 General syntax:

927 urn:epc:id:giai:CompanyPrefix.IndividulAssetReference

928 Example:

929 urn:epc:id:giai:0614141.12345400

930 Grammar:

931 GIAI-URI ::= "urn:epc:id:giai:" GIAIURIBody

932		GIAIURIBody ::= PaddedNumericComponent "." GS3A3Component
933 934 935 936 937 938		The Individual Asset Reference field of the GIAI-URI is expressed as a GS3A3Component, which permits the representation of all characters permitted in the Serial Number according to the GS1 General Specifications. GIAI-URIs that are derived from 96-bit tag encodings, however, will have Serial Numbers that consist only of digits and which have no leading zeros (unless the entire serial number consists of a single zero digit). These limitations are described in the encoding procedures, and in Section <u>12.3.1</u> .
939		The GIAI consists of the following elements:
940 941		 The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the same as the GS1 Company Prefix digits within a GS1 GIAI key.
942		• The Individual Asset Reference, assigned uniquely by the managing entity to a specific asset.
943	6.3.6	Global Service Relation Number – Recipient (GSRN)
944 945		The Global Service Relation Number EPC scheme is used to assign a unique identity to a service recipient.
946		General syntax:
947		urn:epc:id:gsrn:CompanyPrefix.ServiceReference
948		Example:
949		urn:epc:id:gsrn:0614141.1234567890
950		Grammar:
951		GSRN-URI ::= "urn:epc:id:gsrn:" GSRNURIBody
952		GSRNURIBody ::= PaddedNumericComponent "." PaddedNumericComponent
953		The number of characters in the two PaddedNumericComponent fields must total 17 (not including
954		any of the dot characters).
955		The GSRN consists of the following elements:
956 957		The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSRN key.
958		The Service Reference , assigned by the managing entity to a particular service recipient.
959	6.3.7	Global Service Relation Number – Provider (GSRNP)
960 961		The Global Service Relation Number – Provider (GSRNP) EPC scheme is used to assign a unique identity to a service provider.
962		General syntax:
963		urn:epc:id:gsrnp:CompanyPrefix.ServiceReference
964		Example:
965		urn:epc:id:gsrnp:0614141.1234567890
966		Grammar:
967		GSRNP-URI ::= "urn:epc:id:gsrnp:" GSRNURIBody
968		GSRNPURIBody ::= PaddedNumericComponent "." PaddedNumericComponent
969 970		The number of characters in the two PaddedNumericComponent fields must total 17 (not including any of the dot characters).
971		The GSRNP consists of the following elements:

972 973		 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSRN key.
974		• The Service Reference , assigned by the managing entity to a particular service provider.
975	6.3.8	Global Document Type Identifier (GDTI)
976 977		The Global Document Type Identifier EPC scheme is used to assign a unique identity to a specific document, such as land registration papers, an insurance policy, and others.
978		General syntax:
979		urn:epc:id:gdti:CompanyPrefix.DocumentType.SerialNumber
980		Example:
981		urn:epc:id:gdti:0614141.12345.400
982		Grammar:
983		GDTI-URI ::= "urn:epc:id:gdti:" GDTIURIBody
984 985		GDTIURIBody ::= PaddedNumericComponent "." PaddedNumericComponentOrEmpty "."GS3A3Component
986 987		The number of characters in the two PaddedNumericComponent fields must total 12 (not including any of the dot characters).
988 989 990 991 992		The Serial Number field of the GDTI-URI is expressed as a GS3A3Component, which permits the representation of all characters permitted in the Serial Number according to the GS1 General Specifications. GDTI-URIs that are derived from 96-bit tag encodings, however, will have Serial Numbers that have no leading zeros (unless the entire serial number consists of a single zero digit). These limitations are described in the encoding procedures, and in Section <u>12.3.1</u> .
993		The GDTI consists of the following elements:
994 995		 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GDTI key.
996		• The Document Type , assigned by the managing entity to a particular class of document.
997 998 999		The Serial Number, assigned by the managing entity to an individual document. Because an EPC always refers to a specific document rather than a document class, the serial number is mandatory in the GDTI-EPC.
1000	6.3.9	Component / Part Identifier (CPI)
1001 1002		The Component / Part EPC identifier is designed for use by the technical industries (including the automotive sector) for the unique identification of parts or components.
1003 1004		The CPI EPC construct provides a mechanism to directly encode unique identifiers in RFID tags and to use the URI representations at other layers of the EPCglobal architecture.
1005		General syntax:
1006		urn:epc:id:cpi:CompanyPrefix.ComponentPartReference.Serial
1007		Example:
1008		urn:epc:id:cpi:0614141.123ABC.123456789
1009		urn:epc:id:cpi:0614141.123456.123456789
1010		Grammar:
1011		CPI-URI ::= "urn:epc:id:cpi:" CPIURIBody

1012 1013		CPIURIBody ::= PaddedNumericComponent "." CPRefComponent "." NumericComponent
1014 1015 1016 1017 1018 1019		The Component / Part Reference field of the CPI-URI is expressed as a CPRefComponent, which permits the representation of all characters permitted in the Component / Part Reference according to the GS1 General Specifications. CPI-URIs that are derived from 96-bit tag encodings, however, will have Component / Part References that consist only of digits, with no leading zeros, and whose length is less than or equal to 15 minus the length of the GS1 Company Prefix. These limitations are described in the encoding procedures, and in Section <u>12.3.1</u> .
1020		The CPI consists of the following elements:
1021		The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates.
1022		• The Component/Part Reference , assigned by the managing entity to a particular object class.
1023		The Serial Number, assigned by the managing entity to an individual object.
1024 1025 1026 1027 1028		The managing entity or its delegates ensure that each CPI is issued to no more than one physical component or part. Typically this is achieved by assigning a component/part reference to designate a collection of instances of a part that share the same form, fit or function and then issuing serial number values uniquely within each value of component/part reference in order to distinguish between such instances.
1029	6.3.10	Serialised Global Coupon Number (SGCN)
1030		The Global Coupon Number EPC scheme is used to assign a unique identity to a coupon.
1031		General syntax:
1032		urn:epc:id:sgcn:CompanyPrefix.CouponReference.SerialComponent
1033		Example:
1034		urn:epc:id:sgcn:4012345.67890.04711
1035		Grammar:
1036		SGCN-URI ::= "urn:epc:id:sgcn:" SGCNURIBody
1037 1038		SGCNURIBody ::= PaddedNumericComponent "." PaddedNumericComponentOrEmpty "." PaddedNumericComponent
1039 1040		The number of characters in the first PaddedNumericComponent field and the PaddedNumericComponentOrEmpty field must total 12 (not including any of the dot characters).
1041 1042 1043		The Serial Component field of the SGCN-URI is expressed as a PaddedNumericComponent, which may contain up to 12 digits, including leading zeros, as per the GS1 General Specifications. The SGCN consists of the following elements:
1044 1045		 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GCN key.
1046		The Coupon Reference, assigned by the managing entity for the coupon.
1047 1048 1049		• The Serial Component , assigned by the managing entity to a unique instance of the coupon. Because an EPC always refers to a specific coupon rather than a coupon class, the serial number is mandatory in the SGCN-EPC.
1050	6.3.11	Global Identification Number for Consignment (GINC)

1051The Global Identification Number for Consignment EPC scheme is used to assign a unique identity to1052a logical grouping of goods (one or more physical entities) that has been consigned to a freight1053forwarder and is intended to be transported as a whole.

1054		General syntax:
1055		urn:epc:id:ginc:CompanyPrefix.ConsignmentReference
1056		Example:
1057		urn:epc:id:ginc:0614141.xyz3311cba
1058		Grammar:
1059		GINC-URI ::= "urn:epc:id:ginc:" GINCURIBody
1060		GINCURIBody ::= PaddedNumericComponent "." GS3A3Component
1061 1062 1063		The Consignment Reference field of the GINC-URI is expressed as a GS3A3Component, which permits the representation of all characters permitted in the Serial Number according to the GS1 General Specifications.
1064		The GINC consists of the following elements:
1065 1066		The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the same as the GS1 Company Prefix digits within a GS1 GINC key.
1067		The Consignment Reference, assigned uniquely by the freight forwarder.
1068	6.3.12	Global Shipment Identification Number (GSIN)
1069 1070 1071		The Global Shipment Identification Number EPC scheme is used to assign a unique identity to a logical grouping of logistic units for the purpose of a transport shipment from that consignor (seller) to the consignee (buyer).
1072		General syntax:
1073		urn:epc:id:gsin:CompanyPrefix.ShipperReference
1074		Example:
1075		urn:epc:id:gsin:0614141.123456789
1076		Grammar:
1077		GSIN-URI ::= "urn:epc:id:gsin:" GSINURIBody
1078		
		GSINURIBody ::= PaddedNumericComponent "." PaddedNumericComponent
1079 1080		GSINURIBody ::= PaddedNumericComponent "." PaddedNumericComponent The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character).
1079		The number of characters in the two PaddedNumericComponent fields must total 17 (not including
1079 1080		The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character).
1079 1080 1081 1082		 The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character). The GSIN consists of the following elements: The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1
1079 1080 1081 1082 1083	6.3.13	 The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character). The GSIN consists of the following elements: The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSIN key.
1079 1080 1081 1082 1083 1084	6.3.13	 The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character). The GSIN consists of the following elements: The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSIN key. The Shipper Reference, assigned by the consignor (seller) of goods.
1079 1080 1081 1082 1083 1084 1085 1086 1087	6.3.13	 The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character). The GSIN consists of the following elements: The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 company Prefix digits within a GS1 GSIN key. The Shipper Reference, assigned by the consignor (seller) of goods. Individual Trade I tem Piece (ITIP) The Individual Trade I tem Piece EPC scheme is used to assign a unique identity to a subordinate element of a trade item (e.g., left and right shoes, suit trousers and jacket, DIY trade item consisting of several physical units), the latter of which comprises multiple pieces.
1079 1080 1081 1082 1083 1084 1085 1085 1086 1087 1088	6.3.13	 The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character). The GSIN consists of the following elements: The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSIN key. The Shipper Reference, assigned by the consignor (seller) of goods. Individual Trade Item Piece (ITIP) The Individual Trade Item Piece EPC scheme is used to assign a unique identity to a subordinate element of a trade item (e.g., left and right shoes, suit trousers and jacket, DIY trade item consisting
1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089	6.3.13	 The number of characters in the two PaddedNumericComponent fields must total 17 (not including the dot character). The GSIN consists of the following elements: The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSIN key. The Shipper Reference, assigned by the consignor (seller) of goods. Individual Trade Item Piece (ITIP) The Individual Trade Item Piece EPC scheme is used to assign a unique identity to a subordinate element of a trade item (e.g., left and right shoes, suit trousers and jacket, DIY trade item consisting of several physical units), the latter of which comprises multiple pieces.

1093		Gra	ammar:
1094		IT	IP-URI ::= "urn:epc:id:itip:" ITIPURIBody
1095		IT	IPURIBody ::= 4*(PaddedNumericComponent ``.") GS3A3Component
1096 1097			e number of characters in the first two PaddedNumericComponent fields must total 13 (not luding any of the dot characters).
1098 1099			e number of characters in each of the last two PaddedNumericComponent fields must be exactly not including any of the dot characters).
1100 1101			e combined number of characters in the four PaddedNumericComponent fields must total 17 of including any of the dot characters).
1102			
1103 1104 1105 1106 1107 1108		rep the will ent	e Serial Number field of the ITIP-URI is expressed as a GS3A3Component, which permits the presentation of all characters permitted in the Application Identifier 21 Serial Number according to e GS1 General Specifications. ⁴ ITIP-URIs that are derived from 110-bit tag encodings, however, I have Serial Numbers that consist only of digits and which have no leading zeros (unless the tire serial number consists of a single zero digit). These limitations are described in the encoding procedures, and in Section <u>12.3.1</u> .
1109		The	e ITIP consists of the following elements:
1110 1111 1112		•	The GS1 Company Prefix , assigned by GS1 to a managing entity or its delegates. This is the same as the GS1 Company Prefix digits within a GS1 GTIN key. See Section <u>7.3.2</u> for the case of a GTIN-8.
1113 1114 1115 1116 1117		•	The Item Reference , assigned by the managing entity to a particular object class. The Item Reference as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item Reference digits, and treating the result as a single numeric string. See Section <u>7.3.2</u> for the case of a GTIN-8.
1118		•	The Piece Number
1119		•	The Total Quantity of Pieces subordinate to the GTIN
1120 1121		•	The Serial Number , assigned by the managing entity to an individual object. The serial number is not part of the GTIN, but is formally a part of both the SGTIN and the ITIP.
1122	6.3.14	Un	nit Pack Identifier (UPUI)
1123 1124			e Unit Pack Identifier EPC scheme is used to uniquely identify an individual item for tobacco ceability in accordance with EU 2018/574.
1125		Ge	neral syntax:
1126		uri	n:epc:id:upui:CompanyPrefix.ItemRefAndIndicator.TPX
1127		Exa	ample:
1128		uri	n:epc:id:upui:1234567.089456.51qIgY)%3C%26Jp3*j7`SDB
1129		Gra	ammar:
1130		UPI	UI-URI ::= "urn:epc:id:upui:" UPUI-URIBody
1131		UPI	UI-URIBody ::= 2*(PaddedNumericComponent ".") GS3A3Component
1132 1133			e number of characters in the first two PaddedNumericComponent fields must total 13 (not luding any of the dot characters).
1134			

1136 1137		of all characters permitted in Application Identifier (235), Third Party Controlled, Serialised Extension of GTIN, according to the GS1 General Specifications. ⁵
1138		The UPUI consists of the following elements:
1139 1140 1141		The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as the GS1 Company Prefix digits within a GS1 GTIN key. See Section <u>7.3.2</u> for the case of a GTIN-8.
1142 1143 1144 1145 1146		• The Item Reference , assigned by the managing entity to a particular object class. The Item Reference as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item Reference digits, and treating the result as a single numeric string. See Section <u>7.3.2</u> for the case of a GTIN-8.
1147 1148 1149		The Third Party Controlled, Serialised Extension of GTIN, assigned by a third party managing entity to an individual object to uniquely identify an individual item for tobacco traceability in accordance with EU 2018/574.
1150	6.3.15	Global Location Number of Party (PGLN)
1151 1152		The PGLN EPC scheme is used to assign a unique identity to a party, such as a an economic operator or a cost center.
1153		General syntax:
1154		urn:epc:id:pgln:CompanyPrefix.PartyReference
1155		Example:
1156		urn:epc:id:pgln:1234567.89012
1157		Grammar:
1158		PGLN-URI ::= "urn:epc:id:pgln:" PGLNURIBody
1159		PGLNURIBody ::= PaddedNumericComponent "." PaddedNumericComponentOrEmpty
1160 1161		The number of characters in the two PaddedNumericComponent fields must total 12 (not including any of the dot characters).
1162		The PGLN consists of the following elements:
1163 1164		 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GLN key.
1165		The Party Reference, assigned uniquely by the managing entity to a specific party.
1166		
1167	6.3.16	General Identifier (GID)
1168 1169		The General Identifier EPC scheme is independent of any specifications or identity scheme outside the EPCglobal Tag Data Standard.
1170		General syntax:
1171		urn:epc:id:gid:ManagerNumber.ObjectClass.SerialNumber
1172		Example:
1173		urn:epc:id:gid:95100000.12345.400

The TPX field of the UPUI-URI is expressed as a GS3A3Component, which permits the representation

1174 **Grammar**:

1184

1185

- 1175 GID-URI ::= "urn:epc:id:gid:" GIDURIBody
- 1176 GIDURIBody ::= 2*(NumericComponent ".") NumericComponent
- 1177 The GID consists of the following elements:
- 1178The General Manager Number identifies an organisational entity (essentially a company,
manager or other organisation) that is responsible for maintaining the numbers in subsequent
fields Object Class and Serial Number. GS1 assigns the General Manager Number to an entity,
and ensures that each General Manager Number is unique. Note that a General Manager
Number is *not* a GS1 Company Prefix. A General Manager Number may only be used in GID
EPCs.
 - The Object Class is used by an EPC managing entity to identify a class or "type" of thing. These object class numbers, of course, must be unique within each General Manager Number domain.
- Finally, the Serial Number code, or serial number, is unique within each object class. In other words, the managing entity is responsible for assigning unique, non-repeating serial numbers for every instance within each object class.

1189 6.3.17 US Department of Defense Identifier (DOD)

- 1190The US Department of Defense identifier is defined by the United States Department of Defense.1191This tag data construct may be used to encode 96-bit Class 1 tags for shipping goods to the United1192States Department of Defense by a supplier who has already been assigned a CAGE (Commercial1193and Government Entity) code.
- 1194At the time of this writing, the details of what information to encode into these fields is explained in1195a document titled "United States Department of Defense Supplier's Passive RFID Information Guide"1196that can be obtained at the United States Department of Defense's web site1197(http://www.dodrfid.org/supplierguide.htm).
- 1198Note that the DoD Guide explicitly recognises the value of cross-branch, globally applicable1199standards, advising that "suppliers that are EPCglobal subscribers and possess a unique [GS1]1200Company Prefix may use any of the identity types and encoding instructions described in the EPC™1201Tag Data Standards document to encode tags."

1202 General syntax:

1203 urn:epc:id:usdod:CAGEOrDODAAC.SerialNumber

1204 Example:

1205 urn:epc:id:usdod:2S194.12345678901

1206 Grammar:

- 1207 DOD-URI ::= "urn:epc:id:usdod:" DODURIBody
- 1208 DODURIBody ::= CAGECodeOrDODAAC "." DoDSerialNumber
- 1209 CAGECodeOrDODAAC ::= CAGECode | DODAAC
- 1210 CAGECode ::= CAGECodeOrDODAACChar*5
- 1211 DODAAC ::= CAGECodeOrDODAACChar*6
- 1212 DoDSerialNumber ::= NumericComponent
- 1213
 CAGECodeOrDODAACChar := Digit | "A" | "B" | "C" | "D" | "E" | "F" | "G" |

 1214
 "H" | "J" | "K" | "L" | "M" | "N" | "P" | "Q" | "R" | "S" | "T" | "U" | "V"

 1215
 "W" | "X" | "Y" | "Z"

1233

1234 1235

1236

1237

1238 1239

1240

1241

1216 6.3.18 Aerospace and Defense Identifier (ADI)

- 1217The variable-length Aerospace and Defense EPC identifier is designed for use by the aerospace and1218defense sector for the unique identification of parts or items. The existing unique identifier1219constructs are defined in the Air Transport Association (ATA) Spec 2000 standard [SPEC2000], and1220the US Department of Defense Guide to Uniquely Identifying items [UID]. The ADI EPC construct1221provides a mechanism to directly encode such unique identifiers in RFID tags and to use the URI1222representations at other layers of the EPCglobal architecture.
- 1223Within the Aerospace & Defense sector identification constructs supported by the ADI EPC,1224companies are uniquely identified by their Commercial And Government Entity (CAGE) code or by1225their Department of Defense Activity Address Code (DODAAC). The NATO CAGE (NCAGE) code is1226issued by NATO / Allied Committee 135 and is structurally equivalent to a CAGE code (five character1227uppercase alphanumeric excluding capital letters I and O) and is non-colliding with CAGE codes1228issued by the US Defense Logistics Information Service (DLIS). Note that in the remainder of this1229section, all references to CAGE apply equally to NCAGE.
- 1230ATA Spec 2000 defines that a unique identifier may be constructed through the combination of the1231CAGE code or DODAAC together with either:
 - A serial number (SER) that is assigned uniquely within the CAGE code or DODAAC; or
 - An original part number (PNO) that is unique within the CAGE code or DODAAC and a sequential serial number (SEQ) that is uniquely assigned within that original part number.

The US DoD Guide to Uniquely Identifying Items defines a number of acceptable methods for constructing unique item identifiers (UIIs). The UIIs that can be represented using the Aerospace and Defense EPC identifier are those that are constructed through the combination of a CAGE code or DODAAC together with either:

- a serial number that is unique within the enterprise identifier. (UII Construct #1)
- an original part number and a serial number that is unique within the original part number (a subset of UII Construct #2)

1242Note that the US DoD UID guidelines recognise a number of unique identifiers based on GS11243identifier keys as being valid UIDs. In particular, the SGTIN (GTIN + Serial Number), GIAI, and1244GRAI with full serialisation are recognised as valid UIDs. These may be represented in EPC form1245using the SGTIN, GIAI, and GRAI EPC schemes as specified in Sections 6.3.1, 6.3.5, and 6.3.4,1246respectively; the ADI EPC scheme is *not* used for this purpose. Conversely, the US DoD UID1247guidelines also recognise a wide range of enterprise identifiers issued by various issuing agencies1248other than those described above; such UIDs do not have a corresponding EPC representation.

- For purposes of identification via RFID of those aircraft parts that are traditionally not serialised or not required to be serialised for other purposes, the ADI EPC scheme may be used for assigning a unique identifier to a part. In this situation, the first character of the serial number component of the ADI EPC SHALL be a single '#' character. This is used to indicate that the serial number does not correspond to the serial number of a traditionally serialised part because the '#' character is not permitted to appear within the values associated with either the SER or SEQ text element identifiers in ATA Spec 2000 standard.
- 1256For parts that are traditionally serialised / required to be serialised for purposes other than having a1257unique RFID identifier, and for all usage within US DoD UID guidelines, the '#' character SHALL NOT1258appear within the serial number element.
- 1259The ATA Spec 2000 standard recommends that companies serialise uniquely within their CAGE code.1260For companies who do serialise uniquely within their CAGE code or DODAAC, a zero-length string1261SHALL be used in place of the Original Part Number element when constructing an EPC.

1262 General syntax:

1263 urn:epc:id:adi:CAGEOrDODAAC.OriginalPartNumber.Serial

1264 Examples:

- 1265 urn:epc:id:adi:2S194..12345678901
- 1266 urn:epc:id:adi:W81X9C.3KL984PX1.2WMA52

1267		Grammar:
1268		ADI-URI ::= "urn:epc:id:adi:" ADIURIBody
1269		ADIURIBody ::= CAGECodeOrDODAAC "." ADIComponent "." ADIExtendedComponent
1270		ADIComponent ::= ADIChar*
1271		ADIExtendedComponent ::= "%23"? ADIChar+
1272		ADIChar ::= UpperAlpha Digit OtherADIChar
1273		OtherADIChar ::= "-" "%2F"
1274		CAGECodeOrDODAAC is defined in Section <u>6.3.14</u> .
1275	6.3.19	BIC Container Code (BIC)
1276		(source: https://en.wikipedia.org/wiki/ISO_6346#Identification_System)
1277 1278 1279 1280 1281		ISO 6346 is an <i>international standard</i> covering the coding, identification and marking of <i>intermodal (shipping) containers</i> used within <i>containerized intermodal freight transport</i> . The standard establishes a visual identification system for every container that includes a unique serial number (with <i>check digit</i>), the owner, a country code, a size, type and equipment category as well as any operational marks. The standard is managed by the <i>International Container Bureau</i> (BIC).
1282		The BIC consists of the following elements:
1283 1284 1285		The owner code consists of three capital letters of the Latin alphabet to indicate the owner or principal operator of the container. Such code needs to be registered at the Bureau International des Conteneurs in Paris to ensure uniqueness worldwide.
1286 1287		• The equipment category identifier consists of one of the following capital letters of the Latin alphabet:
1288		U for all freight containers
1289		 J for detachable freight container-related equipment
1290		 Z for trailers and chassis
1291 1292		 The serial number consists of 6 numeric digits, assigned by the owner or operator, uniquely identifying the container within that owner/operator's fleet.
1293 1294		• The check digit consists of one numeric digit providing a means of validating the recording and transmission accuracies of the owner code and serial number.
1295		The individual elements of the BIC are not separated by dots (".") in the EPC URI syntax.
1296		
1297		General syntax:
1298		urn:epc:id:bic: <i>BICcontainerCode</i>
1299		Example:
1300		urn:epc:id:bic:CSQU3054383
1301		Grammar:
1302		BIC-URI ::= "urn:epc:id:bic:" BICURIBody
1303		BICURIBody ::= OwnerCode EquipCatId SerialNumber CheckDigit
1304		OwnerCode ::= OnwerCodeChar*3
1305		EquipCatId ::= CatIdChar*1
1306		SerialNumber ::= Digit*6
1307		CheckDigit ::= Digit

1308	OwnerCodeChar ::	= "A"	"B″	"C″	"D"	`Е″	"F"	"G″	"H"	"J″	"K″
1309	"L" "M" "N	" "P"	"Q"	"R"	"S"	"T"	"U"	"V"	"W"	"X"	
1310	"Y" "Z"										
1311	CatIdChar ::= "J	" "U"	™Z″								

EPC Class URI Syntax 1313 6.4

1314	This section specifies the syntax of an EPC Class URI.
1315	The formal grammar for the EPC class URI is as follows:
1316	EPCClass-URI ::= LGTIN-URI

- where the various alternatives on the right hand side are specified in the sections that follow. 1317
- Each EPC Class URI scheme is specified in one of the following subsections, as follows: 1318

1319 Table 6-1 EPC Class Schemes and Where the Pure Identity Form is Defined

EPC Class Scheme	Specified In	Corresponding GS1 key	Typical use	
lgtin	Section 6.4.1	GTIN + Batch or Lot Number	Class of objects belonging to a given batch or lot	

1320	6.4.1	GTIN + Batch/Lot (LGTIN)
1321 1322		The GTIN+ Batch/Lot scheme is used to denote a class of objects belonging to a given batch or lot of a given GTIN.
1323		General syntax:
1324		urn:epc:class:lgtin:CompanyPrefix.ItemRefAndIndicator.Lot
1325		Example:
1326		urn:epc:class:lgtin:4012345.012345.998877
1327		Grammar:
1328		LGTIN-URI ::= "urn:epc:class:lgtin:" LGTINURIBody
1329		LGTINURIBody ::= 2*(PaddedNumericComponent ".") GS3A3Component
1330 1331		The number of characters in the two PaddedNumericComponent fields must total 13 (not including any of the dot characters).
1332 1333 1334		The Lot field of the LGTIN-URI is expressed as a GS3A3Component, which permits the representation of all characters permitted in the Application Identifier (10) Batch or Lot Number according to the GS1 General Specifications.
1335		The LGTIN consists of the following elements:
1336 1337 1338		• The GS1 Company Prefix , assigned by GS1 to a managing entity or its delegates. This is the same as the GS1 Company Prefix digits within a GS1 GTIN key. See Section <u>7.3.2</u> for the case of a GTIN-8.
1339 1340 1341 1342 1343		• The Item Reference and Indicator , assigned by the managing entity to a particular object class. The Item Reference and Indicator as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item Reference digits, and treating the result as a single numeric string. See Section <u>7.3.2</u> for the case of a GTIN-8.

The **Batch or Lot Number**, assigned by the managing entity to an distinct batch or lot of a class of objects. The batch or lot number is not part of the GTIN, but is used to distinguish individual groupings of the same class of objects from each other.

Correspondence between EPCs and GS1 Keys 7 1347

1348 1349

1344

1345

1346

As discussed in Section 4.3, there is a well-defined relationship between Electronic Product Codes (EPCs) and seven keys (plus the component / part identifier) defined in the GS1 General 1350 Specifications [GS1GS]. This section specifies the correspondence between EPCs and GS1 keys.

7.1 The GS1 Company Prefix (GCP) in EPC encodings 1351

1352 The correspondence between EPCs and GS1 keys relies on identifying the portion of a GS1 key that 1353 is the GS1 Company Prefix. The GS1 Company Prefix (GCP) is a 4- to 12-digit number assigned by a 1354 GS1 Member Organisation to a managing entity, and the managing entity is free to create GS1 keys 1355 using that GCP. For purposes of the EPC Tag Data Standard, a 4- or 5-digit GCP is treated as a block 1356 of 100 6-digit GCPs or a block of 10 6-digit GCPs, respectively. In the EPC URI, the GCP is encoded in the CompanyPrefix component, which SHALL include the 4- or 5-digit GCP and the following 2 or 1357 1 digits of the GS1 key, as though it were a 6-digit GCP. This value is then encoded into the EPC 1358 1359 binary encodings using Partition Value 6 (binary: 110).

7.2 Determining length of the EPC CompanyPrefix component for individually 1360 assigned GS1 Keys 1361

- 1362 In some instances, a GS1 Member Organisation assigns an individually assigned (AKA "single issue" 1363 or "one off") GS1 key, such as a complete GTIN, GLN, or other key, to a subscribing organisation. In 1364 such cases, a subscribing organisation SHALL NOT use the digits comprising a particular individually 1365 assigned key to construct any other kind of GS1 key. For example, if a subscribing organisation is issued an individually assigned GLN, it SHALL NOT create SSCCs using the 12 digits of the 1366 1367 individually assigned GLN as though it were a 12-digit GS1 Company Prefix.
- Note that an individually assigned key will generally resolve (e.g., via GEPIR) back to the issuing 1368 MO—as the GCP in question has been assigned by the MO to itself for the purpose of generating 1369 1370 individually assigned keys-rather than to the organisation to which the key was issued. The 1371 allocation of individually assigned keys, based on a common GCP, to disparate subscribing 1372 organisations who have no particular relationship to each other, effectively prevents use of the 1373 CompanyPrefix component of EPC encodings for purposes of filtering/correlation/guerying to the 1374 level of an individual organisation.

Individually assigned GTINs 7.2.1 1375

- 1376 When encoding an individually assigned GTIN as an EPC, the GTIN-12, GTIN-13 or GTIN-8 issued by the MO must first be converted to a 14-digit number by prepending two, one or six leading zeroes, 1377 respectively, to the individually assigned GTIN, as specified in sections and 7.3.1 and 7.3.2. 1378
- 1379 The individually assigned GTIN, after any necessary padding to increase its length to 14 digits, is 1380 stripped of its check digit (which is omitted from all EPC encodings) and indicator digit or leading 1381 zero, and SHALL be contained in the CompanyPrefix component of the EPC, whose length SHALL be fixed at 12 digits for an individually assigned GTIN. For a GTIN-12, GTIN-13 or GTIN-8, the 1382 ItemRefAndIndicator component of the resulting SGTIN EPC is a single zero digit. For a GTIN-1383 14, the ItemRefAndIndicator component of the resulting SGTIN EPC consists of the GTIN-14's 1384 1385 leading zero or indicator digit.
- Note that these rules also apply to individually assigned GTINs assigned by third parties with the 1386 1387 permission of GS1.

1388 Syntax:

1389 urn:epc:id:sgtin:CompanyPrefix.ItemRefAndIndicator.SerialNumber

Example:

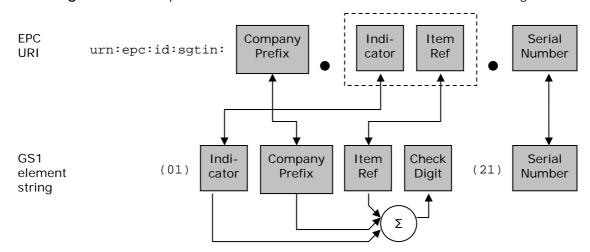
1390

1070		
1391		GS1 element string: (01) 1234567890128 (21) 4711
1392		EPC URI: urn:epc:id:sgtin:123456789012.0.4711
1393		
1394 1395		The corresponding EPC Binary encoding (SGTIN-96 and SGTIN-198) uses Partition Value 0, per Table 14-2 (SGTIN Partition Table).
1396	7.2.2	Individually assigned GLNs
1397 1398 1399		When encoding an individually assigned GLN as an EPC, the entire individually assigned GLN (stripped of its check digit, which is omitted from EPC encodings) occupies the <i>CompanyPrefix</i> component of the EPC, whose length is fixed at 12 digits.
1400 1401 1402 1403		For the resulting SGLN EPC, the <i>LocationReference</i> component is a zero-length string. The <i>Extension</i> component of the SGLN EPC reflects the value of the GLN extension component, AI (254); if the input GS1 element string did not include a GLN extension component (AI 254), the <i>Extension</i> component of the SGLN EPC comprises a single zero digit ('0').
1404		
1405 1406		Note that these rules also apply to individually assigned GLNs (e.g., national business numbers) assigned by third parties with the permission of GS1.
1407		Syntax:
1408		urn:epc:id:sgln:CompanyPrefixExtension
1409		Example (without extension):
1410		GS1 element string: (414) 1234567890128
1411		EPC URI: urn:epc:id:sgln:1234567890120
1412		
1413		Example (with extension):
1414		GS1 element string: (414) 1234567890128 (254) 4711
1415		EPC URI: urn:epc:id:sgln:1234567890124711
1416		
1417 1418		The corresponding EPC Binary encoding (SGLN-96 and SGLN-195) uses Partition Value 0, per Table 14-7 (SGLN Partition Table).
1419	7.2.3	Other individually assigned GS1 Keys
1420 1421		Other individually assigned GS1 Keys (e.g., SSCC, GIAI) should be encoded as EPCs with <i>CompanyPrefix</i> components that are 12 digits in length.
1422 1423 1424 1425		In such cases, a subscribing organisation SHALL NOT use the digits comprising a particular individually assigned key to construct any other GS1 key. For example, if a subscribing organisation is issued an individually assigned SSCC, it SHALL NOT create additional SSCCs using the 12 digits of the individually assigned SSCC as though it were a 12-digit GCP.
1426		Example (SSCC):
1427		GS1 element string: (00) 012345678901234560
1428		EPC URL: urn:epc:id:sscc:123456789012.03456

1428 EPC URI: urn:epc:id:sscc:123456789012.03456

1429 Example (GIAI):

1430 GS1 element string: (8004) 123456789012345678901234567890


- 1431 EPC URI: urn:epc:id:giai:123456789012.345678901234567890
- 1432
- 1433The corresponding EPC Binary encoding uses Partition Value 0, per the respective Partition Table in
section 14.

1435 7.3 Serialised Global Trade Item Number (SGTIN)

- 1436The SGTIN EPC (Section 6.3.1) does not correspond directly to any GS1 key, but instead1437corresponds to a combination of a GTIN key plus a serial number. The serial number in the SGTIN is1438defined to be equivalent to AI 21 in the GS1 General Specifications.
- 1439The correspondence between the SGTIN EPC URI and a GS1 element string consisting of a GTIN key1440(AI 01) and a serial number (AI 21) is depicted graphically below:

1441

Figure 7-1 Correspondence between SGTIN EPC URI and GS1 element string

1442

1451

1452

1453 1454

1455

- 1443 (Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the 1444 Indicator Digit in the figure above.)
- Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
- 1447 EPC URI: urn:epc:id:sgtin: $d_1d_2...d_{(L+1)}.d_1d_{(L+2)}d_{(L+3)}...d_{13}.s_1s_2...s_K$
- 1448 GS1 element string: $(01)d_1d_2...d_{14}$ $(21)s_1s_2...s_K$
- 1449 where $1 \le K \le 20$.

1450 To find the GS1 element string corresponding to an SGTIN EPC URI:

- 1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 13 digits.
- Number the characters of the serial number (third) component of the EPC as shown above. Each s₁ corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
- 14563. Calculate the check digit $d_{14} = (10 ((3(d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13}) + (d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12})) \mod 10)) \mod 10.$
- 14584. Arrange the resulting digits and characters as shown for the GS1 element string. If any s_i in the1459EPC URI is a percent-escape triplet \$xx, in the GS1 element string replace the triplet with the1460corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet \$xx, find the

1461 1462		row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then gives the corresponding character to use in the GS1 element string.)
1463 1464		To find the EPC URI corresponding to a GS1 element string that includes both a GTIN (AI 01) and a serial number (AI 21):
1465		1. Number the digits and characters of the GS1 element string as shown above.
1466 1467 1468		2. Except for a GTIN-8, determine the number of digits <i>L</i> in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes. See Section <u>7.3.2</u> for the case of a GTIN-8.
1469 1470 1471 1472		3. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d_{14} is not included in the EPC URI. For each serial number character s_{i} , replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself or a percent-escape triplet if s_i is not a legal URI character.
1473		Example:
1474		EPC URI: urn:epc:id:sgtin:0614141.712345.32a%2Fb
1475		GS1 element string: (01) 7 0614141 12345 1 (21) 32a/b
1476 1477 1478		Spaces have been added to the GS1 element string for clarity, but they are not normally present. In this example, the slash (/) character in the serial number must be represented as an escape triplet in the EPC URI.
1479	7.3.1	GTIN-12 and GTIN-13

1480To find the EPC URI corresponding to the combination of a GTIN-12 or GTIN-13 and a serial1481number, first convert the GTIN-12 or GTIN-13 to a 14-digit number by adding two or one leading1482zero characters, respectively, as shown in [GS1GS19.0] Section 3.3.2.

1483 Example:

- 1484 GTIN-12: 614141 12345 2
- 1485 Corresponding 14-digit number: 0 0614141 12345 2
- 1486 Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial

1487 Example:

- 1488 GTIN-13: 0614141 12345 2
- 1489 Corresponding 14-digit number: 0 0614141 12345 2
- 1490 Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial
- 1491 In these examples, spaces have been added to the GTIN strings for clarity, but are never encoded.

1492 **7.3.2 GTIN-8**

- 1493 A GTIN-8 is a special case of the GTIN that is used to identify small trade items.
- 1494The GTIN-8 code consists of eight digits N_1 , $N_2...N_8$, where the first digits N_1 to N_L are the GS1-81495Prefix (where L = 1, 2, or 3), the next digits N_{L+1} to N_7 are the Item Reference, and the last digit N_8 1496is the check digit. The GS1-8 Prefix is a one-, two-, or three-digit index number, administered by1497the GS1 Global Office. It does not identify the origin of the item. The Item Reference is assigned by1498the GS1 Member Organisation. The GS1 Member Organisations provide procedures for obtaining1499GTIN-8s.
- 1500To find the EPC URI corresponding to the combination of a GTIN-8 and a serial number, the1501following procedure SHALL be used. For the purpose of the procedure defined above in Section 7.1,1502the GS1 Company Prefix portion of the EPC shall be constructed by prepending five zeros to the first1503three digits of the GTIN-8; that is, the GS1 Company Prefix portion of the EPC is eight digits and

- 1504 shall be $00000N_1N_2N_3$. The Item Reference for the procedure shall be the remaining GTIN-8 digits 1505 apart from the check digit, that is, N₄ to N₇. The Indicator Digit for the procedure shall be zero.
- 1506 Example:
- 1507 GTIN-8: 95010939
- 1508 Corresponding SGTIN-EPC: urn:epc:id:sgtin:00000950.01093.Serial

1509 7.3.3 RCN-8

1510An RCN-8 is an 8-digit code beginning with GS1-8 Prefixes 0 or 2, as defined in [GS1GS19.0]1511Section 2.1.11.1. These are reserved for company internal numbering, and are not GTIN-8 codes.1512RCN-8 codes SHALL NOT be used to construct SGTIN EPCs, and the procedure for GTN-8 codes does1513not apply.

1514 7.3.4 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007)

- 1515The GS1 General Specifications reserve codes beginning with either 04 or 0001 through 0007 for1516company internal numbering. (See [GS1GS19.0], Sections 2.1.11.2 and 2.1.11.3.)
- 1517These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of the EPCglobal Tag1518Data Standard may specify normative rules for using Company Internal Numbering codes in EPCs.

1519 7.3.5 Restricted Circulation (GS1 Prefixes 02 and 20 – 29)

- 1520The GS1 General Specifications reserve codes beginning with either 02 or 20 through 29 for1521restricted circulation for geopolitical areas defined by GS1 member organisations and for variable1522measure trade items. (See [GS1GS19.0], Sections 2.1.11.1 and 2.1.11.1.4)
- 1523These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of the EPCglobal Tag1524Data Standard may specify normative rules for using Restricted Circulation codes in EPCs.

15257.3.6Coupon Code Identification for Restricted Distribution (GS1 Prefixes 981-9841526and 99)

- 1527Coupons may be identified by constructing codes according to Sections 2.6.1-2.6.3 of the GS11528General Specifications. The resulting numbers begin with GS1 Prefixes 981-984 and 99. Strictly1529speaking, however, a coupon is not a trade item, and these coupon codes are not actually trade1530item identification numbers.
- 1531 Therefore, coupon codes for restricted distribution SHALL NOT be used to construct SGTIN EPCs.

1532 7.3.7 Refund Receipt (GS1 Prefix 980)

- 1533Section 2.6.4 of the GS1 General Specification specifies the construction of codes to represent1534refund receipts, such as those created by bottle recycling machines for redemption at point-of-sale.1535The resulting number begins with GS1 Prefix 980. Strictly speaking, however, a refund receipt is not1536a trade item, and these refund receipt codes are not actually trade item identification numbers.
- 1537 Therefore, refund receipt codes SHALL NOT be used to construct SGTIN EPCs.

1538 **7.3.8** ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979)

1539The GS1 General Specifications provide for the use of a 13-digit identifier to represent International1540Standard Book Number, International Standard Music Number, and International Standard Serial1541Number codes. The resulting code is a GTIN whose GS1 Prefix is 977, 978, or 979.

1542 7.3.8.1 ISBN and ISMN

1543ISBN and ISMN codes are used for books and printed music, respectively. The codes are defined by1544ISO (ISO 2108 for ISBN and ISO 10957 for ISMN) and administered by the International ISBN

- 1545Agency (http://www.isbn-international.org/) and affiliated national registration agencies. ISMN is a1546separate organisation (http://www.ismn-international.org/) but its management and coding1547structure are similar to the ones of ISBN.
- 1548While these codes are not assigned by GS1, they have a very similar internal structure that readily1549lends itself to similar treatment when creating EPCs. An ISBN code consists of the following parts,1550shown below with the corresponding concept from the GS1 system:

1551	Prefix Element + Registrant Group Element	= GS1 Prefix (978 or 979 plus more digits)
1552	Registrant Element	= Remainder of GS1 Company Prefix
1553	Publication Element	= Item Reference
1554	Check Digit	= Check Digit

- 1555 The Registrant Group Elements are assigned to ISBN registration agencies, who in turn assign 1556 Registrant Elements to publishers, who in turn assign Publication Elements to individual publication 1557 editions. This exactly parallels the construction of GTIN codes. As in GTIN, the various components are of variable length, and as in GTIN, each publisher knows the combined length of the Registrant 1558 1559 Group Element and Registrant Element, as the combination is assigned to the publisher. The total length of the "978" or "979" Prefix Element, the Registrant Group Element, and the Registrant 1560 Element is in the range of 6 to 12 digits, which is exactly the range of GS1 Company Prefix lengths 1561 1562 permitted in the SGTIN EPC. The ISBN and ISMN can thus be used to construct SGTINs as specified 1563 in this standard.
- 1564To find the EPC URI corresponding to the combination of an ISBN or ISMN and a serial number, the1565following procedure SHALL be used. For the purpose of the procedure defined above in Section 7.1,1566the GS1 Company Prefix portion of the EPC shall be constructed by concatenating the ISBN/ISMN1567Prefix Element (978 or 979), the Registrant Group Element, and the Registrant Element. The Item1568Reference for the procedure shall be the digits of the ISBN/ISMN Publication Element. The Indicator1569Digit for the procedure shall be zero.
- 1570 Example:
- 1571 ISBN: 978-81-7525-766-5
- 1572 Corresponding SGTIN-EPC: urn:epc:id:sgtin:978817525.0766.Serial

1573 **7.3.8.2 ISSN**

- 1574The ISSN is the standardised international code which allows the identification of any serial1575publication, including electronic serials, independently of its country of publication, of its language or1576alphabet, of its frequency, medium, etc. The code is defined by ISO (ISO 3297) and administered by1577the International ISSN Agency (http://www.issn.org/).
- 1578The ISSN is a GTIN starting with the GS1 prefix 977. The ISSN structure does not allow it to be1579expressed in an SGTIN format. Therefore, pending formal requirements emerging from the serial1580publication sector, it is not currently possible to create an SGTIN on the basis of an ISSN.

1581 **7.4 Serial Shipping Container Code (SSCC)**

- 1582The SSCC EPC (Section 6.3.2) corresponds directly to the SSCC key defined in Sections 2.2.1 and15833.3.1 of the GS1 General Specifications [GS1GS19.0].
- 1584The correspondence between the SSCC EPC URI and a GS1 element string consisting of an SSCC1585key (AI 00) is depicted graphically below:

1587

1593

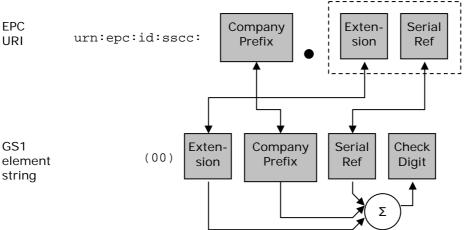
1594

1595

1596

1597

1598


1599

1600 1601

1602

1603

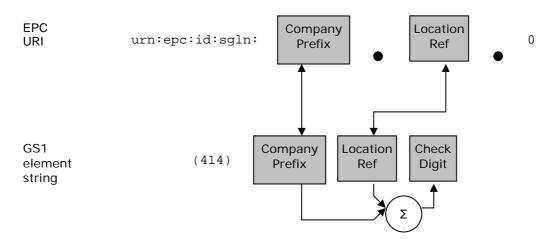
Figure 7-2 Correspondence between SSCC EPC URI and GS1 element string

- 1588 Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 1589 written as follows:
- 1590 EPC URI: urn:epc:id:sscc:d2d3...d_(L+1).d₁d_(L+2)d_(L+3)...d₁₇
- 1591 GS1 element string: $(00)d_1d_2...d_{18}$

1592 To find the GS1 element string corresponding to an SSCC EPC URI:

- 1. Number the digits of the two components of the EPC as shown above. Note that there will always be a total of 17 digits.
- Calculate the check digit d18 = (10 ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) + (d2 + d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10.
- 3. Arrange the resulting digits and characters as shown for the GS1 element string.

To find the EPC URI corresponding to a GS1 element string that includes an SSCC (AI 00):


- 1. Number the digits and characters of the GS1 element string as shown above.
- Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
 - Arrange the digits as shown for the EPC URI. Note that the SSCC check digit d18 is not included in the EPC URI.
- 1604Example:1605EPC URI: urn:epc:id:sscc:0614141.12345678901606GS1 element string: (00) 1 0614141 234567890 81607Spaces have been added to the GS1 element string for clarity, but they are never encoded.

1608 **7.5 Global Location Number With or Without Extension (SGLN)**

- 1609The SGLN EPC (Section 6.3.3) corresponds either directly to a Global Location Number key (GLN) as1610specified in Sections 2.4.4 and 3.7.9 of the GS1 General Specifications [GS1GS19.0], or to the1611combination of a GLN key plus an extension number as specified in Section 3.5.11 of [GS1GS19.0].1612An extension number of zero is reserved to indicate that an SGLN EPC denotes an unextended GLN,1613rather than a GLN plus extension. (See Section 6.3.3 for an explanation of the letter "S" in "SGLN.")
- 1614The correspondence between the SGLN EPC URI and a GS1 element string consisting of a GLN key1615(AI 414) without an extension is depicted graphically below:

1616 Figure 7-3 Correspondence between SGLN EPC URI without extension and GS1 element string

1617

1618The correspondence between the SGLN EPC URI and a GS1 element string consisting of a GLN key1619(AI 414) together with an extension (AI 254) is depicted graphically below:

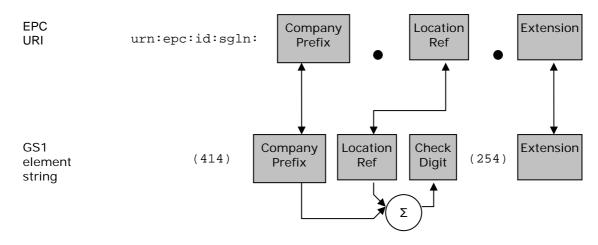
1620

1621

1627

1628

1629


1630

1631

1632

1633

Figure 7-4 Correspondence between SGLN EPC URI with extension and GS1 element string

- 1622Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be1623written as follows:
- 1624 EPC URI: urn:epc:id:sgln: $d_1d_2...d_L.d_{(L+1)}d_{(L+2)}...d_{12}.s_1s_2...s_K$
- 1625 GS1 element string: $(414)d_1d_2...d_{13}$ (254) $s_1s_2...s_K$

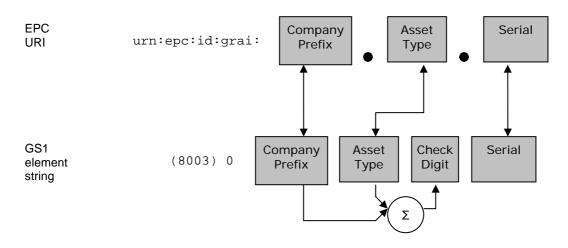
1626 To find the GS1 element string corresponding to an SGLN EPC URI:

- 1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
 - Number the characters of the *Extension* (third) component of the EPC as shown above. Each s_i corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
 - 3. Calculate the check digit $d_{13} = (10 ((3(d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12}) + (d_1 + d_3 + d_5 + d_7 + d_9 + d_{11})) \mod 10)) \mod 10$.
- 16344. Arrange the resulting digits and characters as shown for the GS1 element string. If any s_i in the1635EPC URI is a percent-escape triplet xx, in the GS1 element string replace the triplet with the1636corresponding character according to Table A-1 (For a given percent-escape triplet xx, find the1637row of Table A-1 that contains xx in the "Hex Value" column; the "Graphic symbol" column then

1638 1639	gives the corresponding character to use in the GS1 element string.). If the serial number consists of a single character s_1 and that character is the digit zero ('0'), omit the extension
1640	from the GS1 element string.
1641 1642	To find the EPC URI corresponding to a GS1 element string that includes a GLN (AI 414), with or without an accompanying extension (AI 254):
1643	1. Number the digits and characters of the GS1 element string as shown above.
1644 1645	 Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
1646 1647 1648 1649 1650	3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d ₁₃ is not included in the EPC URI. For each serial number character s _i , replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself or a percent-escape triplet if s _i is not a legal URI character. If the input GS1 element string did not include an extension (AI 254), use a single zero digit ('0') as the entire serial number s ₁ s ₂ s _k in the EPC URI.
1651	Example (without extension):

- Example (without extension):
- 1652
 EPC URI: urn:epc:id:sgln:0614141.12345.0
- 1653
 GS1 element string: (414) 0614141 12345 2

1654 Example (with extension):


- 1655 EPC URI: urn:epc:id:sgln:0614141.12345.32a%2Fb
- 1656 GS1 element string: (414) 0614141 12345 2 (254) 32a/b
- 1657Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this1658example, the slash (/) character in the serial number must be represented as an escape triplet in1659the EPC URI.

16607.6Global Returnable Asset Identifier (GRAI)

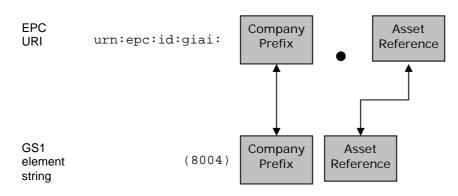
1661The GRAI EPC (Section 6.3.4) corresponds directly to a serialised GRAI key defined in Sections 2.3.11662and 3.9.3 of the GS1 General Specifications [GS1GS19.0]. Because an EPC always identifies a1663specific physical object, only GRAI keys that include the optional serial number have a1664corresponding GRAI EPC. GRAI keys that lack a serial number refer to asset classes rather than1665specific assets, and therefore do not have a corresponding EPC (just as a GTIN key without a serial1666number does not have a corresponding EPC).

1667

Figure 7-5 Correspondence between GRAI EPC URI and GS1 element string

1668

- 1669
- 1670
- Note that the GS1 element string includes an extra zero ('0') digit following the Application Identifier (8003). This zero digit is extra padding in the element string, and is *not* part of the GRAI key itself.



1671 1672		Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
1673		EPC URI: urn:epc:id:grai: $d_1d_2d_L.d_{(L+1)}d_{(L+2)}d_{12}.s_1s_2s_K$
1674		GS1 element string: $(8003)0d_1d_2d_{13}s_1s_2s_K$
1675		To find the GS1 element string corresponding to a GRAI EPC URI:
1676 1677		 Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
1678 1679 1680		 Number the characters of the serial number (third) component of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
1681 1682		3. Calculate the check digit $d_{13} = (10 - ((3(d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12}) + (d_1 + d_3 + d_5 + d_7 + d_9 + d_{11})) \mod 10) \mod 10.$
1683 1684 1685 1686 1687		4. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet %xx, find the row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then gives the corresponding character to use in the GS1 element string.).
1688 1689		To find the EPC URI corresponding to a GS1 element string that includes a GRAI (AI 8003):
1690 1691 1692		 If the number of characters following the (8003) application identifier is less than or equal to 14, stop: this element string does not have a corresponding EPC because it does not include the optional serial number.
1693		2. Number the digits and characters of the GS1 element string as shown above.
1694 1695		 Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
1696 1697 1698 1699		4. Arrange the digits as shown for the EPC URI. Note that the GRAI check digit d_{13} is not included in the EPC URI. For each serial number character s_{i} , replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself or a percent-escape triplet if s_i is not a legal URI character.
1700		Example:
1701		EPC URI: urn:epc:id:grai:0614141.12345.32a%2Fb
1702		GS1 element string: (8003) 0 0614141 12345 2 32a/b
1703 1704 1705		Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this example, the slash (/) character in the serial number must be represented as an escape triplet in the EPC URI.
1706	7.7	Global Individual Asset Identifier (GIAI)
1707		The GIAI EPC (Section 6.3.5) corresponds directly to the GIAI key defined in Sections 2.3.2 and

- 1707The GIAI EPC (Section $\underline{6.3.5}$) corresponds directly to the GIAI key defined in Sections 2.3.2 and17083.9.4 of the GS1 General Specifications [GS1GS19.0].
- 1709The correspondence between the GIAI EPC URI and a GS1 element string consisting of a GIAI key1710(AI 8004) is depicted graphically below:

Figure 7-6 Correspondence between GIAI EPC URI and GS1 element string

1718

1719

1720 1721

1722

1723

1724

1725

1728

1729

1730

1731

1732

1733

1711

- Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
- 1715 EPC URI: urn:epc:id:giai: $d_1d_2...d_L.s_1s_2...s_K$
- 1716 GS1 element string: $(8004)d_1d_2...d_Ls_1s_2...s_K$

1717 To find the GS1 element string corresponding to a GIAI EPC URI:

- Number the characters of the two components of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
- 2. Arrange the resulting digits and characters as shown for the GS1 element string. If any si in the EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet %xx, find the row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then gives the corresponding character to use in the GS1 element string.)

1726To find the EPC URI corresponding to a GS1 element string that includes a GIAI1727(AI 8004):

- 1. Number the digits and characters of the GS1 element string as shown above.
 - 2. Determine the number of digits *L* in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
 - Arrange the digits as shown for the EPC URI. For each serial number character s_i, replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> either the character itself or a percent-escape triplet if s_i is not a legal URI character.
- 1734 EPC URI: urn:epc:id:giai:0614141.32a%2Fb
- 1735 GS1 element string: (8004) 0614141 32a/b
- 1736Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this1737example, the slash (/) character in the serial number must be represented as an escape triplet in1738the EPC URI.

1739 **7.8 Global Service Relation Number – Recipient (GSRN)**

- 1740The GSRN EPC (Section 6.3.6) corresponds directly to the GSRN Recipient key defined in Sections17412.5.2 and 3.9.14 of the GS1 General Specifications [GS1GS19.0].
- 1742The correspondence between the GSRN EPC URI and a GS1 element string consisting of a GSRN key1743(AI 8018) is depicted graphically below:

EPC Company Service urn:epc:id:gsrn: URI Prefix Reference GS1 Company Service Check (8018) element Prefix Reference Digit string

Figure 7-7 Correspondence between GSRN EPC URI and GS1 element string

- 1746Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be1747written as follows:
- 1748 EPC URI: urn:epc:id:gsrn: $d_1d_2...d_L.d_{(L+1)}d_{(L+2)}...d_{17}$
- 1749 GS1 element string: $(8018)d_1d_2...d_{18}$

1750 To find the GS1 element string corresponding to a GSRN EPC URI:

- 1. Number the digits of the two components of the EPC as shown above. Note that there will always be a total of 17 digits.
- 17532. Calculate the check digit $d_{18} = (10 ((3(d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13} + d_{15} + d_{17}) + (d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12} + d_{14} + d_{16})) mod 10)) mod 10.$
- 1755 3. Arrange the resulting digits and characters as shown for the GS1 element string.

To find the EPC URI corresponding to a GS1 element string that includes a GSRN – Recipient (AI 8018):

- 1. Number the digits and characters of the GS1 element string as shown above.
- 2. Determine the number of digits *L* in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
 - 3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d_{18} is not included in the EPC URI.

1763 Example:

- 1764 EPC URI: urn:epc:id:gsrn:0614141.1234567890
- 1765 GS1 element string: (8018) 0614141 1234567890 2
- 1766 Spaces have been added to the GS1 element string for clarity, but they are never encoded.

1767**7.9Global Service Relation Number – Provider (GSRNP)**

- 1768The GSRNP EPC (Section 6.3.6) corresponds directly to the GSRN Provider key defined in Sections17692.5.1 and 3.9.14 of the GS1 General Specifications [GS1GS19.0].
- 1770The correspondence between the GSRNP EPC URI and a GS1 element string consisting of a GSRN –1771Provider key (AI 8017) is depicted graphically below:

1745

1751

1752

1756

1757 1758

1759

1760 1761

1762

1773

1779

1780

1784

1785 1786

1789

1790

EPC Company Service urn:epc:id:gsrnp: URI Prefix Reference GS1 Company Service Check (8017)element Prefix Reference Digit string

Figure 7-8 Correspondence between GSRNP EPC URI and GS1 element string

- 1774Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be1775written as follows:
- 1776 EPC URI: urn:epc:id:gsrnp: $d_1d_2...d_L.d_{(L+1)}d_{(L+2)}...d_{17}$
- 1777 GS1 element string: $(8017)d_1d_2...d_{18}$

1778 To find the GS1 element string corresponding to a GSRNP EPC URI:

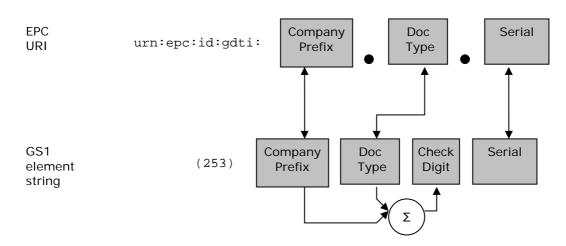
- 1. Number the digits of the two components of the EPC as shown above. Note that there will always be a total of 17 digits.
- 1781 2. Calculate the check digit $d_{18} = (10 ((3(d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13} + d_{15} + d_{17}) + (d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12} + d_{14} + d_{16})) \mod 10)) \mod 10.$
- 1783 3. Arrange the resulting digits and characters as shown for the GS1 element string.

To find the EPC URI corresponding to a GS1 element string that includes a GSRN – Provider (AI 8017):

- 1. Number the digits and characters of the GS1 element string as shown above.
- Determine the number of digits *L* in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
 - 3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d_{18} is not included in the EPC URI.

1791 Example:

- 1792 EPC URI: urn:epc:id:gsrnp:0614141.1234567890
- 1793 GS1 element string: (8017) 0614141 1234567890 2
- 1794 Spaces have been added to the GS1 element string for clarity, but they are never encoded.

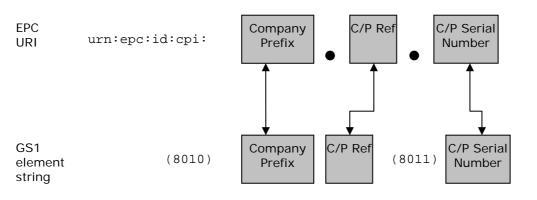

1795 7.10 Global Document Type Identifier (GDTI)

1796The GDTI EPC (Section 6.3.7) corresponds directly to a serialised GDTI key defined in Sections 2.6.91797and 3.5.10 of the GS1 General Specifications [GS1GS19.0]. Because an EPC always identifies a1798specific physical object, only GDTI keys that include the optional serial number have a1799corresponding GDTI EPC. GDTI keys that lack a serial number refer to document classes rather than1800specific documents, and therefore do not have a corresponding EPC (just as a GTIN key without a1801serial number does not have a corresponding EPC).

1803

Figure 7-9 Correspondence between GDTI EPC URI and GS1 element string

1000	
1804 1805	Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
1806	$EPC \; URI: \; \; urn:epc:id:gdti: d_1 d_2 \dots d_L . d_{(L+1)} d_{(L+2)} \dots d_{12} . s_1 s_2 \dots s_K$
1807	GS1 element string: $(253)d_1d_2d_{13}s_1s_2s_K$
1808	To find the GS1 element string corresponding to a GDTI EPC URI:
1809 1810	1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
1811 1812 1813	 Number the characters of the serial number (third) component of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
1814 1815	3. Calculate the check digit $d_{13} = (10 - ((3(d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12}) + (d_1 + d_3 + d_5 + d_7 + d_9 + d_{11})) \mod 10)) \mod 10.$
1816 1817 1818 1819 1820	4. Arrange the resulting digits and characters as shown for the GS1 element string. If any s_i in the EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet %xx, find the row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then gives the corresponding character to use in the GS1 element string.).
1821	To find the EPC URI corresponding to a GS1 element string that includes a GDTI (AI 253):
1822 1823 1824	1. If the number of characters following the (253) application identifier is less than or equal to 13, stop: this element string does not have a corresponding EPC because it does not include the optional serial number.
1825	2. Number the digits and characters of the GS1 element string as shown above.
1826 1827	3. Determine the number of digits <i>L</i> in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
1828 1829 1830 1831	4. Arrange the digits as shown for the EPC URI. Note that the GDTI check digit d_{13} is not included in the EPC URI. For each serial number character s_{i} , replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself or a percent-escape triplet if s_i is not a legal URI character.
1832	Example:
1833	EPC URI: urn:epc:id:gdti:0614141.12345.006847
1834	GS1 element string: (253) 0614141 12345 2 006847


1835 Spaces have been added to the GS1 element string for clarity, but they are never encoded.

1836 7.11 Component and Part Identifier (CPI)

- 1837The CPI EPC (Section 6.3.9) does not correspond directly to any GS1 key, but instead corresponds1838to a combination of two data elements defined in sections 3.9.10 and 3.9.11 of the GS1 General1839Specifications [GS1GS19.0].
- 1840The correspondence between the CPI EPC URI and a GS1 element string consisting of a Component1841/ Part Identifier (AI 8010) and a Component / Part serial number (AI 8011) is depicted graphically1842below:

1843

Figure 7-10 Correspondence between CPI EPC URI and GS1 element string

1844

1851

1852

1853

1861

1862

1863

- 1845 Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be 1846 written as follows:
- 1847 EPC URI: urn:epc:id:cpi: $d_1d_2...d_L.d_{(L+1)}d_{(L+2)}...d_N.s_1s_2...s_K$

1848 GS1 element string: $(8010)d_1d_2...d_N$ $(8011)s_1s_2...s_K$

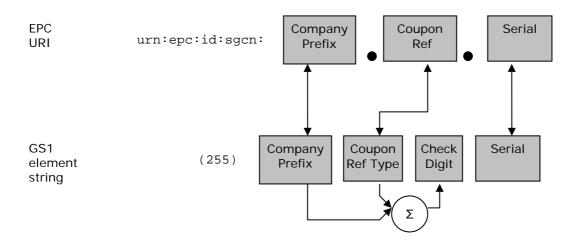
1849 where $1 \le N \le 30$ and $1 \le K \le 12$.

1850 To find the GS1 element string corresponding to a CPI EPC URI:

- Number the digits of the three components of the EPC as shown above. Each d_i in the second component corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
- 18542. Arrange the resulting digits and characters as shown for the GS1 element string. If any d_i in the1855EPC URI is a percent-escape triplet xx, in the GS1 element string replace the triplet with the1856corresponding character according to Table G-1 (G). (For a given percent-escape triplet xx,1857find the row of Table G-1 that contains xx in the "Hex Value" column; the "Graphic symbol"1858column then gives the corresponding character to use in the GS1 element string.)

1859To find the EPC URI corresponding to a GS1 element string that includes both a1860Component / Part Identifier (AI 8010) and a Component / Part Serial Number (AI 8011):

- 1. Number the digits and characters of the GS1 element string as shown above.
 - 2. Determine the number of digits *L* in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
- 18643. Arrange the characters as shown for the EPC URI. For each component/part character d_i ,1865replace it with the corresponding value in the "URI Form" column of <u>Table G-1</u> (G) either the1866character itself or a percent-escape triplet if d_i is not a legal URI character.


1867 Example:

- 1868 EPC URI: urn:epc:id:cpi:0614141.5PQ7%2FZ43.12345
- 1869 GS1 element string: (8010) 0614141 5PQ7/Z43 (8011) 12345
- 1870Spaces have been added to the GS1 element string for clarity, but they are not normally present. In1871this example, the slash (/) character in the component/part reference must be represented as an1872escape triplet in the EPC URI.

1873 7.12 Serialised Global Coupon Number (SGCN)

- 1874The SGCN EPC (Section 6.3.10) corresponds directly to a serialised GCN key defined in1875Sections 2.6.1 and 3.5.12 of the GS1 General Specifications [GS1GS19.0]. Because an EPC always1876identifies a specific physical or digital object, only SGCN keys that include the serial number have a1877corresponding SGCN EPC. GCN keys that lack a serial number refer to coupon classes rather than1878specific coupons, and therefore do not have a corresponding EPC.
- 1879

Figure 7-11 Correspondence between SGCN EPC URI and GS1 element string

1880

1886

1887

- 1881Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be
written as follows:
- 1883 EPC URI: urn:epc:id:sgcn: $d_1d_2...d_L.d_{(L+1)}d_{(L+2)}...d_{12}.s_1s_2...s_K$
- 1884 GS1 element string: $(255)d_1d_2...d_{13}s_1s_2...s_K$

1885 To find the GS1 element string corresponding to a SGCN EPC URI:

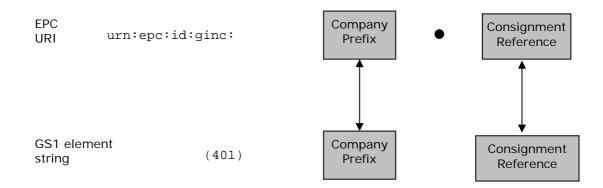
- 1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
- 18882. Number the characters of the serial number (third) component of the EPC as shown above. Each1889 s_i is a digit character.
- 1890 3. Calculate the check digit $d_{13} = (10 ((3(d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12}) + (d_1 + d_3 + d_5 + d_7 + d_9 + d_{11})) \mod 10) \mod 10.$
- 1892 4. Arrange the resulting digits as shown for the GS1 element string.

1893 To find the EPC URI corresponding to a GS1 element string that includes a GCN (AI 255):

- If the number of characters following the (255) application identifier is less than or equal to 13, stop: this element string does not have a corresponding EPC because it does not include the optional serial number.
- 1897 2. Number the digits and characters of the GS1 element string as shown above.

898 899	3.	Determine the number of digits <i>L</i> in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.

19004. Arrange the digits as shown for the EPC URI. Note that the GCN check digit d_{13} is not included in1901the EPC URI.


1902 Example:

- 1903 EPC URI: urn:epc:id:sgcn:4012345.67890.04711
- 1904 GS1 element string: (255) 4012345 67890 1 04711
- 1905 Spaces have been added to the GS1 element string for clarity, but they are never encoded.

1906 **7.13** Global Identification Number for Consignment (GINC)

- 1907The GINC EPC (Section 6.5.1) corresponds directly to the GINC key defined in Sections 2.2.2 and19083.7.2 of the GS1 General Specifications [GS1GS19.0].
- 1909The correspondence between the GINC EPC URI and a GS1 element string consisting of a GINC key1910(AI 401) is depicted graphically below:
- 1911

Figure 7-12 Correspondence between GINC EPC URI and GS1 element string

1912

1918

1919

1920

- Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
- 1915 EPC URI: urn:epc:id:ginc: $d_1d_2...d_L.s_1s_2...s_K$
- 1916 GS1 element string: $(401)d_1d_2...d_Ls_1s_2...s_K$

1917 To find the GS1 element string corresponding to a GINC EPC URI:

- 1. Number the characters of the two components of the EPC as shown above. Each s_i corresponds to either a single character or to a percent-escape triplet consisting of a character followed by two hexadecimal digit characters.
- 19212. Arrange the resulting digits and characters as shown for the GS1 element string. If any s_i in the1922EPC URI is a percent-escape triplet xx, in the GS1 element string replace the triplet with the1923corresponding character according to Table A-1 (For a given percent-escape triplet xx, find the1924row of Table A-1 that contains xx in the "Hex Value" column; the "Graphic symbol" column then1925gives the corresponding character to use in the GS1 element string.)

1926	То	find the EPC URI corresponding to a GS1 element string that includes a GINC (AI 401):
1927	1.	Number the digits and characters of the GS1 element string as shown above.
1000	2	Determine the number of divite Lin the CC1 Common Deafine This many he does for successing

19282. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example,1929by reference to an external table of company prefixes.

19303. Arrange the digits as shown for the EPC URI. For each serial number character s_i , replace it1931with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself1932or a percent-escape triplet if s_i is not a legal URI character.

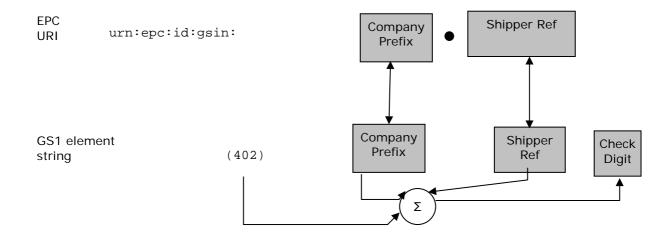
1933 Example:

- 1934 EPC URI: urn:epc:id:ginc:0614141.xyz47%2F11
- 1935 GS1 element string: (401) 0614141 xyz47/11
- 1936Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this1937example, the slash (/) character in the serial number must be represented as an escape triplet in1938the EPC URI.

1939 7.14 Global Shipment Identification Number (GSIN)

- 1940The GSIN EPC (Section 6.5.2) corresponds directly to the GSIN key defined in Sections 2.2.3 and19413.7.3 of the GS1 General Specifications [GS1GS19.0].
- 1942The correspondence between the GSIN EPC URI and a GS1 element string consisting of an GSIN key1943(AI 402) is depicted graphically below:
- 1944

1945


1953

1954 1955

1956

1957

Figure 7-13 Correspondence between GSIN EPC URI and GS1 element string

- 1946Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be1947written as follows:
- 1948 EPC URI: urn:epc:id:gsin:dld2...dL.d(L+1)d(L+2)d(L+3)...d_{16}

1949 GS1 element string: $(402)d_1d_2...d_{17}$

1950 To find the GS1 element string corresponding to an GSIN EPC URI:

- 19511.Number the digits of the two components of the EPC as shown above. Note that there will
always be a total of 16 digits.
 - 2. Calculate the check digit $d_{17} = (10 (((d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13} + d_{15}) + 3(d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12} + d_{14} + d_{16})) \mod 10)) \mod 10.$

Arrange the resulting digits and characters as shown for the GS1 element string.

- 1. To find the EPC URI corresponding to a GS1 element string that includes a GSIN (AI 402):
- 2. Number the digits and characters of the GS1 element string as shown above.
- Determine the number of digits *L* in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
- 19604. Arrange the digits as shown for the EPC URI. Note that the GSIN check digit d_{17} is not included1961in the EPC URI.

		EPC Tag Data Standard Standard
962		Example:
963		EPC URI: urn:epc:id:gsin:0614141.123456789
964		GS1 element string: (402) 0614141 123456789 0
965		Spaces have been added to the GS1 element string for clarity, but they are never encoded.
966	7.15	Individual Trade Item Piece (ITIP)
967 968		The ITIP EPC (Section 6.3.13) does not correspond directly to any GS1 key, but instead corresponds to a combination of AIs (8006) and (21).
69 70		The correspondence between the ITIP EPC URI and a GS1 element string consisting of AI (8006) and AI (21) is depicted graphically below:
971	2*(Pad	Figure 7-14 Correspondence between ITIP EPC URI and GS1 element string ledNumericComponent ".")
	EPC URI	urn:epc:id:itip: Company Prefix • Indi- cator Item Ref • Total • Serial Number
	GS1 eleme string	nt (8006) Indi- cator Prefix Ref Digit Piece Total (21) Serial Number
972		
973 974		Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
75		$EPC \; URI: \; \; urn:epc:id:itip: d_1 d_2 d_1 d_{(L+1)} . d_1 d_{(L+2)} d_{(L+3)} d_{13}) . d_1 d_2 . d_1 d_2 . s_1 s_2 s_K$
76		GS1 element string: $(8006)d_1d_2d_{18}$ (21) $s_1s_2s_K$
77		where $1 \leq K \leq 20$.
78		To find the GS1 element string corresponding to an ITIP EPC URI:
79 80		1. Number the digits of the first four components of the EPC as shown above. Note that there will always be a total of 17 digits.
81 82 83		2. Number the characters of the serial number (seventh) component of the EPC as shown above. Each s _i corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
84 85		3. Calculate the check digit $d_{14} = (10 - ((3(d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13}) + (d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12})) \mod 10)) \mod 10.$
86 87 88		4. Arrange the resulting digits and characters as shown for the GS1 element string. If any s _i in the EPC URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet %xx, find the

1991 To find the EPC URI corresponding to a GS1 element string that includes both AI (8006) 1992 and AI (21):

gives the corresponding character to use in the GS1 element string.)

1993 1. Number the digits and characters of the GS1 element string as shown above.

1989

1990

row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then

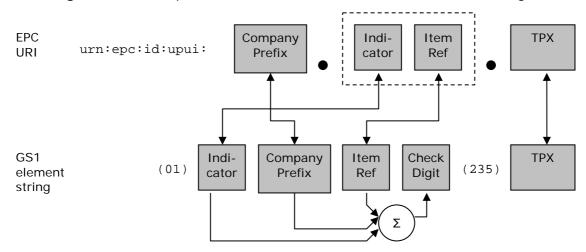
- Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes. See Section <u>7.1.2</u> for the case of a GTIN-8.
- 19973. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d_{14} is not included1998in the EPC URI. For each serial number character s_i , replace it with the corresponding value in1999the "URI Form" column of <u>Table A-1</u> either the character itself or a percent-escape triplet if s_i 2000is not a legal URI character.

2001 Example:

- 2002 EPC URI: urn:epc:id:itip:4012345.012345.04.04.32a%2Fb
- 2003 GS1 element string: (8006) 0 4012345 12345 6 04 04 (21) 32a/b
- 2004Spaces have been added to the GS1 element string for clarity, but they are not normally present. In2005this example, the slash (/) character in the serial number must be represented as an escape triplet2006in the EPC URI.

2008 7.16 Unit Pack Identifier (UPUI)

- 2009The UPUI EPC (Section 6.3.14) does not correspond directly to any GS1 key, but instead2010corresponds to a combination of a GTIN key plus a *Third Party Controlled, Serialised Extension of*2011*GTIN* (TPX), as specified in the GS1 General Specifications [GS1GS].
- 2012The correspondence between the UPUI EPC URI and a GS1 element string consisting of a GTIN key2013(AI 01) and a Third Party Controlled, Serialised Extension of GTIN (AI 235) is depicted graphically2014below:
- 2015


2016

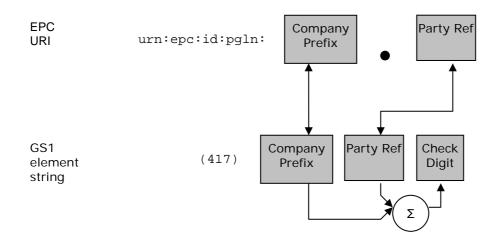
2007

1994

1995 1996

Figure 7-15 Correspondence between UPUI EPC URI and GS1 element string

- 2017 (Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the 2018 Indicator Digit in the figure above.)
- Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
- 2021 EPC URI: urn:epc:id:upui: $d_1d_2...d_{(L+1)}.d_1d_{(L+2)}d_{(L+3)}...d_{13}.s_1s_2...s_K$
- 2022 GS1 element string: $(01)d_1d_2...d_{14}$ (235) $s_1s_2...s_K$
- 2023 where $1 \le K \le 28$.


2024 To find the GS1 element string corresponding to a UPUI EPC URI:

20251. Number the digits of the first two components of the EPC as shown above. Note that there will
always be a total of 13 digits.

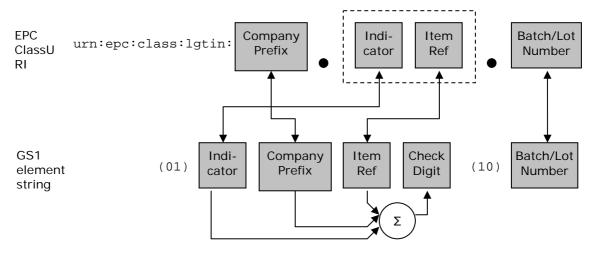
2027 2028 2029	2.	Number the characters of the third component (TPX) of the EPC as shown above. Each s_i corresponds to either a single character or to a percent-escape triplet consisting of a character followed by two hexadecimal digit characters.
2030 2031	3.	Calculate the check digit $d_{14} = (10 - ((3(d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13}) + (d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12})) \mod 10)$ mod 10.
2032 2033 2034 2035 2036	4.	Arrange the resulting digits and characters as shown for the GS1 element string. If any s_i in the EPC URI is a percent-escape triplet $\$xx$, in the GS1 element string replace the triplet with the corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet $\$xx$, find the row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then gives the corresponding character to use in the GS1 element string.)
2037 2038		find the EPC URI corresponding to a GS1 element string that includes both a GTIN (AI) and a <i>Third Party Controlled, Serialised Extension of GTIN</i> (AI 235):
2039	1.	Number the digits and characters of the GS1 element string as shown above.
2040 2041 2042	2.	Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes. See Section <u>7.1.2</u> for the case of a GTIN-8.
2043 2044 2045 2046	3.	Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d_{14} is not included in the EPC URI. For each serial number character s_{\pm} , replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself or a percent-escape triplet if s_{\pm} is not a legal URI character.
2047	Ex	ample:
2048	EPO	CURI: urn:epc:id:upui:1234567.089456.51qIgY)%3C%26Jp3*j7`SDB
2049	GS	1 element string: (01) 0 1234567 89456 0 (235) 51qIgY)<&Jp3*j7`SDB
2050 2051 2052	this	aces have been added to the GS1 element string for clarity, but they are not normally present. In s example, the 'less than' (<) and ampersand ($\&$) characters in the serial number must be presented as an escape triplet in the EPC URI.

2053 7.17 Global Location Number of Party (PGLN)

- 2054The PGLN EPC (Section 6.3.15) corresponds directly to the Global Location Number of a Party2055(PARTY) as specified in the GS1 General Specifications [GS1GS].
- 2056The correspondence between the PGLN EPC URI and a GS1 element string consisting of a GLN Party2057key (AI 417) is depicted graphically below:
- 2058 Figure 7-16 Correspondence between SGLN EPC URI without extension and GS1 element string

2059

2060 2061	Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element string be written as follows:
2062	$EPC \; URI: \; \; urn:epc:id:pgln: d_1 d_2 d_{\mathrm{L}} . d_{(\mathrm{L+1})} d_{(\mathrm{L+2})} d_{12} . s_1 s_2 s_{\mathrm{K}}$
2063	GS1 element string: $(417) d_1 d_2 \dots d_{13}$
2064	To find the GS1 element string corresponding to an PGLN EPC URI:
2065 2066	1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
2067 2068	2. Calculate the check digit $d_{13} = (10 - ((3(d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12}) + (d_1 + d_3 + d_5 + d_7 + d_9 + d_{11})) \mod 10)) \mod 10.$
2069	3. Arrange the resulting digits as shown for the GS1 element string.
2070	To find the EPC URI corresponding to a GS1 element string that includes a GLN (AI 417):
2071	1. Number the digits and characters of the GS1 element string as shown above.
2072 2073	2. Determine the number of digits <i>L</i> in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
2074 2075	3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d_{13} is not included in the EPC URI.
2076	Example:
2077	EPC URI: urn:epc:id:pgln:1234567.89012
2078	GS1 element string: (417) 1234567 89012 8
2079	


2080 7.18 GTIN + batch/lot (LGTIN)

2081The LGTIN EPC Class (Section 6.3.1) does not correspond directly to any GS1 key, but instead2082corresponds to a combination of a GTIN key plus a Batch/Lot Number. The Batch/Lot Number in the2083LGTIN is defined to be equivalent to AI 10 in the GS1 General Specifications.

2084The correspondence between the LGTIN EPC Class URI and a GS1 element string consisting of a2085GTIN key (AI 01) and a Batch/Lot Number (AI 10) is depicted graphically below:

2086

Figure 7-17 Correspondence between LGTIN EPC Class URI and GS1 element string

2087 2088

2089

(Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the Indicator Digit in the figure above.)

2090 2091		Formally, the correspondence is defined as follows. Let the EPC Class URI and the GS1 element string be written as follows:
2092		$EPC Class URI: urn:epc:class:lgtin: d_2 d_3 d_{(\mathtt{L+1})} . d_1 d_{(\mathtt{L+2})} d_{(\mathtt{L+3})} d_{13} . s_1 s_2 s_{\mathtt{K}}$
2093		GS1 element string: $(01)d_1d_2d_{14}$ $(10)s_1s_2s_K$
2094		where $1 \le K \le 20$.
2095		To find the GS1 element string corresponding to an LGTIN EPC Class URI:
2096 2097		1. Number the digits of the first two components of the URI as shown above. Note that there will always be a total of 13 digits.
2098 2099 2100		 Number the characters of the Batch/Lot Number (third) component of the URI as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
2101 2102		3. Calculate the check digit $d_{14} = (10 - ((3(d_1 + d_3 + d_5 + d_7 + d_9 + d_{11} + d_{13}) + (d_2 + d_4 + d_6 + d_8 + d_{10} + d_{12})) \mod 10)) \mod 10.$
2103 2104 2105 2106 2107		4. Arrange the resulting digits and characters as shown for the GS1 element string. If any s _i in the URI is a percent-escape triplet %xx, in the GS1 element string replace the triplet with the corresponding character according to <u>Table A-1</u> (For a given percent-escape triplet %xx, find the row of <u>Table A-1</u> that contains xx in the "Hex Value" column; the "Graphic symbol" column then gives the corresponding character to use in the GS1 element string.)
2108 2109		To find the EPC Class URI corresponding to a GS1 element string that includes both a GTIN (AI 01) and a Batch/Lot Number (AI 10):
2110		1. Number the digits and characters of the GS1 element string as shown above.
2111 2112 2113		2. Except for a GTIN-8, determine the number of digits <i>L</i> in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes. See Section <u>7.1.2</u> for the case of a GTIN-8.
2114 2115 2116 2117		3. Arrange the digits as shown for the EPC Class URI. Note that the GTIN check digit d_{14} is not included in the EPC Class URI. For each serial number character s_{i} , replace it with the corresponding value in the "URI Form" column of <u>Table A-1</u> – either the character itself or a percent-escape triplet if s_i is not a legal URI character.
2118		Example:
2119		EPC Class URI: urn:epc:class:lgtin:0614141.712345.32a%2Fb
2120		GS1 element string: (01) 7 0614141 12345 1 (10) 32a/b
2121 2122 2123		Spaces have been added to the GS1 element string for clarity, but they are not normally present. In this example, the slash (/) character in the serial number must be represented as an escape triplet in the EPC Class URI.
2124 2125		For GTIN-12, GTIN-13, GTIN-8 and other forms of the GTIN, see the subsections of Section 7.1. The considerations in those sections apply in an analogous manner to LGTIN.
2126	8	URIs for EPC Pure identity patterns

2127Certain software applications need to specify rules for filtering lists of EPC pure identities according2128to various criteria. This specification provides a Pure Identity Pattern URI form for this purpose. A2129Pure Identity Pattern URI does not represent a single EPC, but rather refers to a set of EPCs. A2130typical Pure Identity Pattern URI looks like this:

- 2131 urn:epc:idpat:sgtin:0652642.*.*
- 2132This pattern refers to any EPC SGTIN, whose GS1 Company Prefix is 0652642, and whose Item2133Reference and Serial Number may be anything at all. The tag length and filter bits are not2134considered at all in matching the pattern to EPCs.

2135	In general, there is a Pure Identity Pattern URI scheme corresponding to each Pure Identity EPC URI
2136	scheme (Section 6.3), whose syntax is essentially identical except that any number of fields starting
2137	at the right may be a star (*). This is more restrictive than EPC Tag Pattern URIs (Section 13), in
2138	that the star characters must occupy adjacent rightmost fields and the range syntax is not allowed
2139	at all.

- 2140 The pure identity pattern URI for the DoD Construct is as follows:
- 2141 urn:epc:idpat:usdod:CAGECodeOrDODAACPat.serialNumberPat
- 2142 with similar restrictions on the use of star (*).

2143 8.1 Syntax

```
2144 The grammar for Pure Identity Pattern URIs is given below.
```

```
2145 IDPatURI ::= "urn:epc:idpat:" IDPatBody
```

```
2146IDPatBody ::= GIDIDPatURIBody | SGTINIDPatURIBody | SGLNIDPatURIBody |2147GIAIIDPatURIBody | SSCCIDPatURIBody | GRAIIDPatURIBody | GSRNIDPatURIBody |2148GSRNPIDPatURIBody | GDTIIDPatURIBody | SGCNIDPatURIBody | GINCIDPatURIBody2149GSINIDPatURIBody | DODIDPatURIBody | ADIIDPatURIBody | CPIIDPatURIBody |2150ITIPIDPartURIBody | UPUIIDPatURIBody | PGLNIDPatURIBody
```

```
2151 GIDIDPatURIBody ::= "gid:" GIDIDPatURIMain
```

```
2152 GIDIDPatURIMain ::=
```

```
2*(NumericComponent ".") NumericComponent
2153
                 2*(NumericComponent ".") "*"
2154
2155
                 NumericComponent ".*.*"
                 ``*.*.*″
2156
2157
              SGTINIDPatURIBody ::= "sgtin:" SGTINPatURIMain
2158
              SGTINPatURIMain ::=
2159
                2*(PaddedNumericComponent ".") GS3A3Component
2160
                2*(PaddedNumericComponent ".") "*"
                 PaddedNumericComponent ".*.*"
2161
2162
                 ``*.*.*″
2163
              GRAIIDPatURIBody ::= "grai:" SGLNGRAIIDPatURIMain
2164
              SGLNIDPatURIBody ::= "sgln:" SGLNGRAIIDPatURIMain
2165
              SGLNGRAIIDPatURIMain ::=
                PaddedNumericComponent "." PaddedNumericComponentOrEmpty "."
2166
2167
              GS3A3Component
                 PaddedNumericComponent "." PaddedNumericComponentOrEmpty ".*"
2168
2169
                 PaddedNumericComponent ".*.*"
2170
                 ``*.*.*″
2171
              SSCCIDPatURIBody ::= "sscc:" SSCCIDPatURIMain
2172
              SSCCIDPatURIMain ::=
2173
                PaddedNumericComponent "." PaddedNumericComponent
2174
                 PaddedNumericComponent ".*"
2175
                 **.*"
2176
              GIAIIDPatURIBody ::= "giai:" GIAIIDPatURIMain
```

PaddedNumericComponent "." GS3A3Component

GSRNIDPatURIBody ::= "gsrn:" GSRNIDPatURIMain

GSRNPIDPatURIBody ::= "gsrnp:" GSRNIDPatURIMain

PaddedNumericComponent ".*"

``*.*″

GIAIIDPatURIMain ::=

2177

2178 2179

2180 2181

2182


```
2183
              GSRNIDPatURIMain ::=
2184
                PaddedNumericComponent "." PaddedNumericComponent
2185
                 PaddedNumericComponent ".*"
                 ``*.*″
2186
2187
              GDTIIDPatURIBody ::= "gdti:" GDTIIDPatURIMain
2188
              GDTIIDPatURIMain ::=
2189
                PaddedNumericComponent "." PaddedNumericComponentOrEmpty "."
2190
              GS3A3Component
                PaddedNumericComponent "." PaddedNumericComponentOrEmpty ".*"
2191
                 PaddedNumericComponent ".*.*"
2192
                 ``*`*`*″
2193
2194
              CPIIDPatURIBody ::= "cpi:" CPIIDPatMain
2195
              CPIIDPatMain ::=
                PaddedNumericComponent "." CPRefComponent "." NumericComponent
2196
                 PaddedNumericComponent "." CPRefComponent ".*"
2197
                 PaddedNumericComponent ".*.*"
2198
                 ``*.*.*″
2199
              SGCNIDPatURIBody ::= "sgcn:" SGCNIDPatURIMain
2200
2201
              SGCNIDPatURIMain ::=
2202
                PaddedNumericComponent "." PaddedNumericComponentOrEmpty "."
2203
              PaddedNumericComponent
                 PaddedNumericComponent "." PaddedNumericComponentOrEmpty ".*"
2204
2205
                 PaddedNumericComponent ".*.*"
2206
                 ``*.*.*″
2207
              GINCIDPatURIBody ::= "ginc:" GINCIDPatURIMain
2208
              GINCIDPatURIMain ::=
2209
                PaddedNumericComponent "." GS3A3Component
2210
                 PaddedNumericComponent ".*"
2211
                 **.*"
2212
              GSINIDPatURIBody ::= "gsin:" GSINIDPatURIMain
2213
              GSINIDPatURIMain ::=
                PaddedNumericComponent "." PaddedNumericComponent
2214
2215
                 PaddedNumericComponent ".*"
                 ** *"
2216
2217
              ITIPIDPatURIBody ::= "itip:" ITIPPatURIMain
2218
              TTTPPatURIMain ::=
2219
                4*(PaddedNumericComponent ".") GS3A3Component
                4*(PaddedNumericComponent ".") "*"
2220
2221
                 2*(PaddedNumericComponent ".") "*.*.*"
2222
                 PaddedNumericComponent ".*.*.*"
2223
                 2224
              UPUIIDPatURIBody ::= "upui:" UPUIPatURIMain
2225
              UPUIPatURIMain ::=
2226
                2*(PaddedNumericComponent ".") GS3A3Component
2227
                 2*(PaddedNumericComponent ".") "*"
2228
                 PaddedNumericComponent ".*.*"
                 ``*.*.*″
2229
              PGLNIDPatURIBody ::= "pgln:" PGLNPatURIMain
2230
2231
              PGLNPatURIMain ::=
2232
                2*(PaddedNumericComponent "."
2233
               2*(PaddedNumericComponent ".")
```


2234	PaddedNumericComponent ".*"
2235	" * . * <i>"</i>
2236	DODIDPatURIBody ::= "usdod:" DODIDPatMain
2237	DODIDPatMain ::=
2238	CAGECodeOrDODAAC "." DoDSerialNumber
2239	CAGECodeOrDODAAC ".*"
2240	· · · · · · · · · · · · · · · · · · ·
2241	ADIIDPatURIBody ::= "adi:" ADIIDPatMain
2242	ADIIDPatMain ::=
2243	CAGECodeOrDODAAC "." ADIComponent "." ADIExtendedComponent
2244	CAGECodeOrDODAAC "." ADIComponent ".*"
2245	CAGECodeOrDODAAC ``.*.*"
2246	"*·* <i>"</i>

2247 8.2 Semantics

- 2248The meaning of a Pure Identity Pattern URI (urn:epc:idpat:) is formally defined as denoting a2249set of a set of pure identity EPCs, respectively.
- 2250The set of EPCs denoted by a specific Pure Identity Pattern URI is defined by the following decision2251procedure, which says whether a given Pure Identity EPC URI belongs to the set denoted by the2252Pure Identity Pattern URI.
- 2253Let urn:epc:idpat:Scheme:P1.P2...Pn be a Pure Identity Pattern URI. Let2254urn:epc:id:Scheme:C1.C2...Cn be a Pure Identity EPC URI, where the Scheme field of both2255URIs is the same. The number of components (n) depends on the value of Scheme.
- 2256First, any Pure Identity EPC URI component Ci is said to match the corresponding Pure Identity2257Pattern URI component Pi if:
- 2258 Pi is a NumericComponent, and Ci is equal to Pi; or
- 2259Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as well as in2260length; or
- 2261Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or CPRefComponent2262and Ci is equal to Pi, character for character; or
- 2263 Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or
- 2264 Pi is a StarComponent (and Ci is anything at all)
- 2265Then the Pure Identity EPC URI is a member of the set denoted by the Pure Identity Pattern URI if2266and only if Ci matches Pi for all $1 \le i \le n$.

9 Memory Organisation of Gen 2 RFID tags

2268 9.1 Types of Tag Data

2269

2270

2271

2272

2273

2274 2275

2276

RFID Tags, particularly Gen 2 RFID Tags, may carry data of three different kinds:

- Business Data: Information that describes the physical object to which the tag is affixed. This information includes the Electronic Product Code (EPC) that uniquely identifies the physical object, and may also include other data elements carried on the tag. This information is what business applications act upon, and so this data is commonly transferred between the data capture level and the business application level in a typical implementation architecture. Most standardised business data on an RFID tag is equivalent to business data that may be found in other data carriers, such as barcodes.
- **Control Information**: Information that is used by data capture applications to help control the process of interacting with tags. Control Information includes data that helps a capturing

2279application filter out tags from large populations to increase read efficiency, special handling2280information that affects the behaviour of capturing application, information that controls tag2281security features, and so on. Control Information is typically *not* passed directly to business2282applications, though Control Information may influence how a capturing application presents2283business data to the business application level. Unlike Business Data, Control Information has2284no equivalent in barcodes or other data carriers.

- 2285 Tag Manufacture Information: Information that describes the Tag itself, as opposed to the 2286 physical object to which the tag is affixed. Tag Manufacture information includes a manufacturer 2287 ID and a code that indicates the tag model. It may also include information that describes tag 2288 capabilities, as well as a unique serial number assigned at manufacture time. Usually, Tag 2289 Manufacture Information is like Control Information in that it is used by capture applications but 2290 not directly passed to business applications. In some applications, the unique serial number that 2291 may be a part of Tag Manufacture Information is used in addition to the EPC, and so acts like 2292 Business Data. Like Control Information, Tag Manufacture Information has no equivalent in 2293 barcodes or other data carriers.
- 2294It should be noted that these categories are slightly subjective, and the lines may be blurred in2295certain applications. However, they are useful for understanding how the Tag Data Standards are2296structured, and are a good guide for their effective and correct use.
- 2297 The following table summarises the information above.

Information type	Description	Where on Gen 2 Tag	Where typically used	Bar Code Equivalent
Business Data	Describes the physical object to which the tag is affixed.	EPC Bank (excluding PC and XPC bits, and filter value within EPC) User Memory Bank	Data Capture layer and Business Application layer	Yes: GS1 keys, Application Identifiers (AIs)
Control Information	Facilitates efficient tag interaction	Reserved Bank EPC Bank: PC and XPC bits, and filter value within EPC	Data Capture layer	No
Tag Manufacture Information	Describes the tag itself, as opposed to the physical object to which the tag is affixed	TID Bank	Data Capture layer Unique tag manufacture serial number may reach Business Application layer	No

2298 **Table 9-1** Kinds of Data on a Gen 2 RFID Tag

2299 9.2 Gen 2 Tag Memory Map

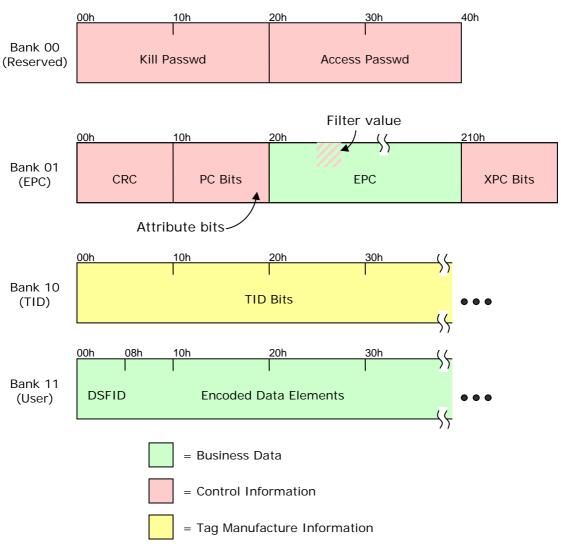
2300 Binary data structures defined in the Tag Data Standard are intended for use in RFID Tags, 2301 particularly in UHF Class 1 Gen 2 Tags (also known as ISO 18000-6C Tags). The air interface standard [UHFC1G2] specifies the structure of memory on Gen 2 tags. Specifically, it specifies that 2302 memory in these tags consists of four separately addressable banks, numbered 00, 01, 10, and 11. 2303 2304 It also specifies the intended use of each bank, and constraints upon the content of each bank dictated by the behaviour of the air interface. For example, the layout and meaning of the Reserved 2305 2306 bank (bank 00), which contains passwords that govern certain air interface commands, is fully 2307 specified in [UHFC1G2].

- For those memory banks and memory locations that have no special meaning to the air interface (i.e., are "just data" as far as the air interface is concerned), the Tag Data Standard specifies the content and meaning of these memory locations.
- 2311Following the convention established in [UHFC1G2], memory addresses are described using2312hexadecimal bit addresses, where each bank begins with bit 00h and extends upward to as many2313bits as each bank contains, the capacity of each bank being constrained in some respects by2314[UHFC1G2] but ultimately may vary with each tag make and model. Bit 00h is considered the most2315significant bit of each bank, and when binary fields are laid out into tag memory the most significant2316bit of any given field occupies the lowest-numbered bit address occupied by that field. When2317describing individual fields, however, the least significant bit is numbered zero. For example, the

Access Password is a 32-bit unsigned integer consisting of bits $b_{31}b_{30}...b_0$, where b_{31} is the most significant bit and b_0 is the least significant bit. When the Access Password is stored at address $20_h - 3F_h$ (inclusive) in the Reserved bank of a Gen 2 tag, the most significant bit b_{31} is stored at tag address 20_h and the least significant bit b_0 is stored at address $3F_h$.

The following diagram shows the layout of memory on a Gen 2 tag, The colours indicate the type of data following the categorisation in *Figure 3-1*.

2324


2318

2319 2320

2321

2322

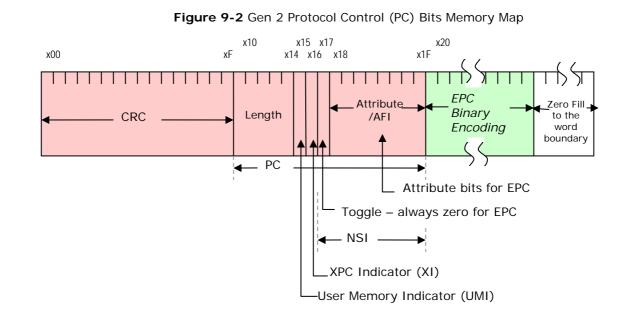
2323

2325 2326

The following table describes the fields in the memory map above.

2327 Table 9-2 Gen 2 Memory Map

able 7-2 Gen 2 Methory Map						
Bank	Bits	Field	Description	Category	Where Specified	
Bank 00 (Reserved)	00 _h — 1F _h	Kill Passwd	A 32-bit password that must be presented to the tag in order to complete the Gen 2 "kill" command.	Control Info	[UHFC1G2]	
	20 _h – 2F _h	Access Passwd	A 32-bit password that must be presented to the tag in order to perform privileged operations	Control Info	[UHFC1G2]	
Bank 01 (EPC)	00 _h — 0F _h	CRC	A 16-bit Cyclic Redundancy Check computed over the contents of the EPC bank.	Control Info	[UHFC1G2]	


Figure 9-1 Gen 2 Tag Memory Map

Bank	Bits	Field	Description	Category	Where Specified
	10 _h — 1F _h	PC Bits	Protocol Control bits (see below)	Control Info	(see below)
	20 _h – end	EPC	Electronic Product Code, plus filter value. The Electronic Product code is a globally unique identifier for the physical object to which the tag is affixed. The filter value provides a means to improve tag read efficiency by selecting a subset of tags of interest.	Business Data (except filter value, which is Control Info)	The EPC is defined in Sections <u>6</u> , <u>7</u> , and <u>13</u> . The filter values are defined in Section <u>10</u> .
	210 _h – 21F _h	XPC Bits	Extended Protocol Control bits. If bit 16_h of the EPC bank is set to one, then bits $210_h - 21F_h$ (inclusive) contain additional protocol control bits as specified in [UHFC1G2]	Control Info	[UHFC1G2]
Bank 10 (TID)	00 _h – end	TID Bits	Tag Identification bits, which provide information about the tag itself, as opposed to the physical object to which the tag is affixed.	Tag Manu- facture Info	Section <u>16</u>
Bank 11 (User)	00 _h – end	DSFID	Logically, the content of user memory is a set of name-value pairs, where the name part is an OID [ASN.1] and the value is a character string. Physically, the first few bits are a Data Storage Format Identifier as specified in [ISO15961] and [ISO15962]. The DSFID specifies the format for the remainder of the user memory bank. The DSFID is typically eight bits in length, but may be extended further as specified in [ISO15961]. When the DSFID specifies Access Method 2, the format of the remainder of user memory is "Packed Objects" as specified in Section <u>17</u> . This format is recommended for use in EPC applications. The physical encoding in the Packed Objects data format is as a sequence of "Packed Objects," where each Packed Object includes one or more name-value pairs whose values are compacted together.	Business Data	[ISO15961], [ISO15962], Section <u>17</u>

The following diagram illustrates in greater detail the first few bits of the EPC Bank (Bank 01), and in particular shows the various fields within the Protocol Control bits (bits $10_h - 1F_h$, inclusive).

2332 The following table specifies the meaning of the PC bits:

2333 Table 9-3 Gen 2 Protocol Control (PC) Bits Memory Map

Bits	Field	Description	Where Specified
10 _h — 14 _h	Length	th Represents the number of 16-bit words comprising the PC field and the EPC field (below). See discussion in Section <u>15.1.1</u> for the encoding of this field.	
15 _h	User Memory Indicator (UMI)	Indicates whether the user memory bank is present and contains data.	[UHFC1G2]
16 _h	XPC Indicator (XI)	Indicates whether an XPC is present	[UHFC1G2]
17h	Toggle	If zero, indicates an EPCglobal application; in particular, indicates that bits $18_h - 1F_h$ contain the Attribute Bits and the remainder of the EPC bank contains a binary encoded EPC. If one, indicates a non-EPCglobal application; in particular, indicates that bits $18_h - 1F_h$ contain the ISO Application Family Identifier (AFI) as defined in [ISO15961] and the remainder of the EPC bank contains a Unique Item Identifier (UII) appropriate for that AFI.	[UHFC1G2]
$18_{h} - 1F_{h} (if toggle = 0)$	Attribute Bits	Bits that may guide the handling of the physical object to which the tag is affixed. (Applies to Gen2 v 1.x tags only.)	Section <u>11</u>
$18_{h} - 1F_{h} (if toggle = 1)$	AFI	An Application Family Identifier that specifies a non- EPCglobal application for which the remainder of the EPC bank is encoded	[ISO15961]

2334 2335

2336 2337 Bits $17_h - 1F_h$ (inclusive) are collectively known as the Numbering System Identifier (NSI). It should be noted, however, that when the toggle bit (bit 17_h) is zero, the numbering system is always the Electronic Product Code, and bits $18_h - 1F_h$ contain the Attribute Bits whose purpose is completely unrelated to identifying the numbering system being used.

2338 10 Filter Value

The filter value is additional control information that may be included in the EPC memory bank of a Gen 2 tag. The intended use of the filter value is to allow an RFID reader to select or deselect the tags corresponding to certain physical objects, to make it easier to read the desired tags in an environment where there may be other tags present in the environment. For example, if the goal is to read the single tag on a pallet, and it is expected that there may be hundreds or thousands of item-level tags present, the performance of the capturing application may be improved by using the Gen 2 air interface to select the pallet tag and deselect the item-level tags.

- Filter values are available for all EPC types except for the General Identifier (GID). There is a different set of standardised filter value values associated with each type of EPC, as specified below.
- 2348It is essential to understand that the filter value is additional "control information" that is *not* part of2349the Electronic Product Code. The filter value does not contribute to the unique identity of the EPC.2350For example, it is *not* permissible to attach two RFID tags to different physical objects where both2351tags contain the same EPC, even if the filter values are different on the two tags.
- Because the filter value is not part of the EPC, the filter value is *not* included when the EPC is represented as a pure identity URI, nor should the filter value be considered as part of the EPC by business applications. Capturing applications may, however, read the filter value and pass it upwards to business applications in some data field other than the EPC. It should be recognised, however, that the purpose of the filter values is to assist in the data capture process, and in most cases the filter value will be of limited or no value to business applications. The filter value is *not* intended to provide a reliable packaging-level indicator for business applications to use.
- 2359Tables of filter values for all EPC schemes are available for download at2360http://www.gs1.org/gsmp/kc/epcglobal/tds.

2361 10.1 Use of "Reserved" and "All Others" Filter Values

2362In the following sections, filter values marked as "reserved" are reserved for assignment by2363EPCglobal in future versions of this specification. Implementations of the encoding and decoding2364rules specified herein SHALL accept any value of the filter values, whether reserved or not.2365Applications, however, SHOULD NOT direct an encoder to write a reserved value to a tag, nor rely2366upon a reserved value decoded from a tag, as doing so may cause interoperability problems if a2367reserved value is assigned in a future revision to this specification.

Each EPC scheme includes a filter value identified as "All Others." This filter value means that the object to which the tag is affixed does not match the description of any of the other filter values defined for that EPC scheme. In some cases, the "All Others" filter value may appear on a tag that was encoded to conform to an earlier version of this specification, at which time no other suitable filter value was available. When encoding a new tag, the filter value should be set to match the description of the object to which the tag is affixed, with "All Others" being used only if a suitable filter value for the object is not defined in this specification.

2375 10.2 Filter Values for SGTIN EPC Tags

2376

The normative specifications for Filter Values for SGTIN EPC Tags are specified below.

2377 Table 10-1 SGTIN Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Point of Sale (POS) Trade Item	1	001
Full Case for Transport *	2	010
Reserved (see Section <u>10.1</u>)	3	011
Inner Pack Trade Item Grouping for Handling	4	100
Reserved (see Section <u>10.1</u>)	5	101
Unit Load **	6	110

Туре	Filter Value	Binary Value
Unit inside Trade Item or component inside a product not intended for individual sale	7	111

* When used as the EPC Filter Value for an SGTIN, "Full Case for Transport" denotes a case or carton whose composition of multiple POS trade items is standardised via master data and can be consistently (re-) ordered in this configuration by referencing a single GTIN.

** When used as the EPC Filter Value for an SGTIN, "Unit Load" denotes one or more trade items
contained on a pallet or other type of load carrier (e.g. rolly, dolly, tote, garment rack, bag, sack,
etc.) *, making them suitable for transport, stacking, and storage as a unit, whose composition is
standardised via master data and can be consistently (re-)ordered in this configuration by
referencing a single GTIN.

2386 10.3 Filter Values for SSCC EPC Tags

2387

The normative specifications for Filter Values for SSCC EPC Tags are specified below.

2388 Table 10-2 SSCC Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Full Case for Transport	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Unit Load	6	110
Reserved (see Section <u>10.1</u>)	7	111

2389 10.4 Filter Values for SGLN EPC Tags

2390 Table 10-3 SGLN Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2391 10.5 Filter Values for GRAI EPC Tags

2392 Table 10-4 GRAI Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Reserved (see Section <u>10.1</u>)	2	010

Туре	Filter Value	Binary Value
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2393 10.6 Filter Values for GIAI EPC Tags

2394 Table 10-5 GIAI Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Rail Vehicle	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2395 **10.7 Filter Values for GSRN and GSRNP EPC Tags**

2396

Table 10-6 GSRN and GSRNP Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2397 10.8 Filter Values for GDTI EPC Tags

2398 Table 10-7 GDTI Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Travel Document *	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110

Туре	Filter Value	Binary Value
Reserved (see Section <u>10.1</u>)	7	111

* A **Travel Document** is an identity document issued by a government or international treaty organisation to facilitate the movement of individuals across international boundaries.

2401 10.9 Filter Values for CPI EPC Tags

2402 **Table 10-8** CPI Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2403 10.10 Filter Values for SGCN EPC Tags

2404 Table 10-9 SGCN Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2405 10.11 Filter Values for ITIP EPC Tags

2406 Table 10-10 ITIP Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000
Reserved (see Section <u>10.1</u>)	1	001
Reserved (see Section <u>10.1</u>)	2	010
Reserved (see Section <u>10.1</u>)	3	011
Reserved (see Section <u>10.1</u>)	4	100
Reserved (see Section <u>10.1</u>)	5	101
Reserved (see Section <u>10.1</u>)	6	110
Reserved (see Section <u>10.1</u>)	7	111

2407 10.12 Filter Values for GID EPC Tags

2408 The GID EPC scheme does not provide for the use of filter values.

2409 10.13 Filter Values for DOD EPC Tags

2410 Filter values for US DoD EPC Tags are as specified in [USDOD].

2411 10.14 Filter Values for ADI EPC Tags

2412 Table 10-11 ADI Filter Values

Туре	Filter Value	Binary Value
All Others (see Section <u>10.1</u>)	0	000000
Item, other than an item to which filter values 8 through 63 apply	1	000001
Carton	2	000010
Reserved (see Section <u>10.1</u>)	3 thru 5	000011 thru 000101
Pallet	6	000110
Reserved (see Section <u>10.1</u>)	7	000111
Seat cushions	8	001000
Seat covers	9	001001
Seat belts	10	001010
Galley, Galley carts and other Galley Service Equipment	11	001011
Unit Load Devices, cargo containers	12	001100
Aircraft Security items (life vest boxes, rear lavatory walls, lavatory ceiling access hatches)	13	001101
Life vests	14	001110
Oxygen generators	15	001111
Engine components	16	010000
Avionics	17	010001
Experimental ("flight test") equipment	18	010010
Other emergency equipment (smoke masks, PBE, crash axes, medical kits, smoke detectors, flashlights, safety cards, etc.)	19	010011
Other rotables; e.g., line or base replaceable	20	010100
Other repairable	21	010101
Other cabin interior	22	010110
Other repair (exclude component); e.g., structure item repair	23	010111
Passenger Seats (structure)	24	011000
IFEs (In-Flight Entertainment) Systems	25	011001
Reserved (see Section <u>10.1</u>)	26 thru 55	011010 thru 110111
Location Identifier (*)	56	111000
Documentation	57	111001
Tools	58	111010
Ground Support Equipment	59	111011
Other Non-flyable equipment	60	111100
Reserved for internal company use	61 thru 63	111101 thru 111111

2414

2415

2416

2417

2418

2419 2420

2421

- **Non-Normative**: When assigning filter values to tagged parts, the filter values chosen should be as specific as possible. For example, a filter value of 17 (Avionics) is a better choice for a radar black box than the more general category of 20 (Other Rotables). On the other hand, a filter value of 20 (Other Rotables) would be appropriate for a radar antenna in the nose cone of a plane since 17 (Avionics) would not be accurate.
- * **Note**: location identifier may act differently from an item "identifying" tag in that it identifies a location that may be referenced by other items. Thus, an item might have an identification tag, but also a location tag. An example might be a particular part of an aircraft or even the entire aircraft.
- 2422Non-Normative: One example of "location" could be a particular airplane "tail number". For2423example, Airline XYZ has a fleet of 200 737s with the same interior configuration, and once2424you are inside of it, you can't tell which particular 737 you are in. This Airline wants to place2425RFID "location marker(s)" with the tail number encoded, and place them inside the passenger2426doors, or cargo hold doors. The doors could end up having two tags, one is for the door itself,2427i.e. it has the door part number, serial number, and things, and another tag is for "location"2428purpose.

2429 **11** Attribute bits

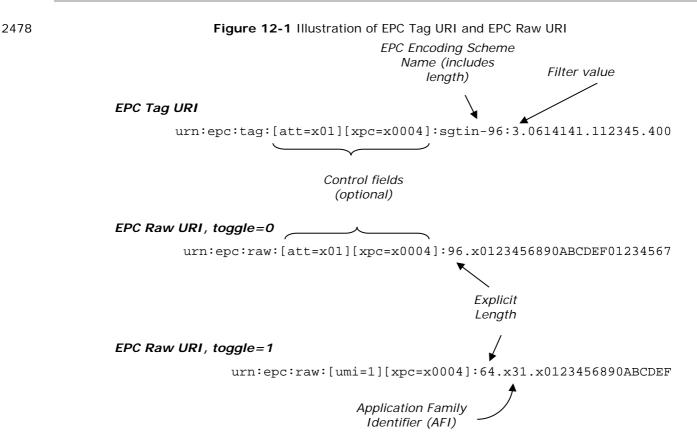
- 2430 This section applies to Gen2 v 1.x tags only.
- 2431The Attribute Bits are eight bits of "control information" that may be used by capturing applications2432to guide the capture process. Attribute Bits may be used to determine whether the physical object2433to which a tag is affixed requires special handling of any kind.
- Attribute bits are available for all EPC types. The same definitions of attribute bits as specified below apply regardless of which EPC scheme is used.
- 2436It is essential to understand that attribute bits are additional "control information" that is not part of2437the Electronic Product Code. Attribute bits do not contribute to the unique identity of the EPC. For2438example, it is not permissible to attach two RFID tags to two different physical objects where both2439tags contain the same EPC, even if the attribute bits are different on the two tags.
- 2440 Because attribute bits are not part of the EPC, they are not included when the EPC is represented as 2441 a pure identity URI, nor should the attribute bits be considered as part of the EPC by business applications. Capturing applications may, however, read the attribute bits and pass them upwards to 2442 business applications in some data field other than the EPC. It should be recognised, however, that 2443 2444 the purpose of the attribute bits is to assist in the data capture and physical handling process, and 2445 in most cases the attribute bits will be of limited or no value to business applications. The attribute 2446 bits are not intended to provide a reliable master data or product descriptive attributes for business 2447 applications to use.
- 2448 The currently assigned attribute bits are as specified below:

2449 Table 11-1 Attribute Bit Assignments

Bit Address	Assigned as of TDS Version	Meaning	
18 _h	[unassigned]		
19 _h	[unassigned]		
1A _h	[unassigned]		
1B _h	[unassigned]		
1Ch	[unassigned]		
1D _h	[unassigned]		
1E _h	[unassigned]		

Bit Address	Assigned as of TDS Version	Meaning
1F _h	1.5	A "1" bit indicates the tag is affixed to hazardous material. A "0" bit provides no such indication.

In the table above, attribute bits marked as "unassigned" are reserved for assignment by EPCglobal 2451 in future versions of this specification. Implementations of the encoding and decoding rules specified herein SHALL accept any value of the attribute bits, whether reserved or not. Applications, however, 2452 2453 SHOULD direct an encoder to write a zero for each unassigned bit, and SHOULD NOT rely upon the 2454 value of an unassigned bit decoded from a tag, as doing so may cause interoperability problems if 2455 an unassigned value is assigned in a future revision to this specification.


12 EPC Tag URI and EPC Raw URI 2456

- 2457 The EPC memory bank of a Gen 2 tag contains a binary-encoded EPC, along with other control 2458 information. Applications do not normally process binary data directly. An application wishing to 2459 read the EPC may receive the EPC as a Pure Identity EPC URI, as defined in Section 6. In other 2460 situations, however, a capturing application may be interested in the control information on the tag 2461 as well as the EPC. Also, an application that writes the EPC memory bank needs to specify the 2462 values for control information that are written along with the EPC. In both of these situations, the 2463 EPC Tag URI and EPC Raw URI may be used.
- 2464 The EPC Tag URI specifies both the EPC and the values of control information in the EPC memory 2465 bank. It also specifies which of several variant binary coding schemes is to be used (e.g., the choice 2466 between SGTIN-96 and SGTIN-198). As such, an EPC Tag URI completely and uniquely specifies the 2467 contents of the EPC memory bank. The EPC Raw URI also specifies the complete contents of the EPC 2468 memory bank, but represents the memory contents as a single decimal or hexadecimal numeral.

12.1 Structure of the EPC Tag URI and EPC Raw URI 2469

- 2470 The EPC Tag URI begins with urn:epc:tag:, and is used when the EPC memory bank contains a 2471 valid EPC. EPC Tag URIs resemble Pure Identity EPC URIs, but with added control information. The EPC Raw URI begins with urn:epc:raw:, and is used when the EPC memory bank does not contain 2472 a valid EPC. This includes situations where the toggle bit (bit 17_h) is set to one, as well as situations 2473 where the toggle bit is set to zero but the remainder of the EPC bank does not conform to the 2474 2475 coding rules specified in Section 14, either because the header bits are unassigned or the remainder 2476 of the binary encoding violates a validity check for that header.
- 2477 The following figure illustrates these URI forms.

2480The first form in the figure, the EPC Tag URI, is used for a valid EPC. It resembles the Pure Identity2481EPC URI, with the addition of optional control information fields as specified in Section <u>12.2.2</u> and a2482(non-optional) filter value. The EPC scheme name (sgtin-96 in the example above) specifies a2483particular binary encoding scheme, and so it includes the length of the encoding. This is in contrast2484to the Pure Identity EPC URI which identifies an EPC scheme but not a specific binary encoding2485(e.g., sgtin but not specifically sgtin-96).

- 2486The EPC Raw URI illustrated by the second example in the figure can be used whenever the toggle2487bit (bit 17h) is zero, but is typically only used if the first form cannot (that is, if the contents of the2488EPC bank cannot be decoded according to Section 14.3.9). It specifies the contents of bit 20h2489onward as a single hexadecimal numeral. The number of bits in this numeral is determined by the2490"length" field in the EPC bank of the tag (bits 10h 14h). (The grammar in Section 12.4 includes a2491variant of this form in which the contents are specified as a decimal numeral. This form is2492deprecated.)
- 2493The EPC Raw URI illustrated by the third example in the figure is used when the toggle bit (bit 17_h)2494is one. It is similar to the second form, but with an additional field between the length and payload2495that reports the value of the AFI field (bits $18_h 1F_h$) as a hexadecimal numeral.
- 2496Each of these forms is fully defined by the encoding and decoding procedures specified in Section2497<u>14.5.12</u>

2498 **12.2 Control Information**

2499The EPC Tag URI and EPC Raw URI specify the complete contents of the Gen 2 EPC memory bank,2500including control information such as filter values and attribute bits. This section specifies how2501control information is included in these URIs.

2505

2506

2507

2502 12.2.1 Filter Values

Filter values are only available when the EPC bank contains a valid EPC, and only then when the EPC is an EPC scheme other than GID. In the EPC Tag URI, the filter value is indicated as an additional field following the scheme name and preceding the remainder of the EPC, as illustrated below:

Figure 12-2 Illustration of Filter Value within EPC Tag URI

EPC Pure Identity URI

urn:epc:id:sgtin:0614141.112345.400

-

2508The filter value is a decimal integer. The allowed values of the filter value are specified in2509Section <u>10</u>.

2510 12.2.2 Other control information fields

- 2511Control information in the EPC bank apart from the filter values is stored separately from the EPC.2512Such information can be represented both in the EPC Tag URI and the EPC Raw URI, using the2513name-value pair syntax described below.
- 2514 In both URI forms, control field name-value pairs may occur following the urn:epc:tag: or 2515 urn:epc:raw:, as illustrated below:
- 2516 urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.0614141.112345.400
- 2517 urn:epc:raw:[att=x01][xpc=x0004]:96.x012345689ABCDEF01234567
- 2518Each element in square brackets specifies the value of one control information field. An omitted field2519is equivalent to specifying a value of zero. As a limiting case, if no control information fields are2520specified in the URI it is equivalent to specifying a value of zero for all fields. This provides back-2521compatibility with earlier versions of the Tag Data Standard.
- 2522 The available control information fields are specified in the following table.
- 2523 **Table 12-1** Control information fields

Field	Syntax	Description	Read/Write
Attribute Bits	[att=xNN]	The value of the attribute bits (bits $18_h - 1F_h$), as a two-digit hexadecimal numeral <i>NN</i> . This field is only available if the toggle bit (bit 17_h) is zero.	Read / Write
User Memory Indicator	[umi=B]	The value of the user memory indicator bit (bit 15_h). The value <i>B</i> is either the digit 0 or the digit 1.	Read / Write Note that certain Gen 2 Tags may ignore the value written to this bit, and instead calculate the value of the bit from the contents of user memory. See [UHFC1G2].
Extended PC Bits	[xpc=xNNNN]	The value of the XPC bits (bits 210 _h -21F _h) as a four-digit hexadecimal numeral <i>NNNN</i> .	Read only

2524 2525 2526 The user memory indicator and extended PC bits are calculated by the tag as a function of other information on the tag or based on operations performed to the tag (such as recommissioning). Therefore, these fields cannot be written directly. When reading from a tag, any of the control

- information fields may appear in the URI that results from decoding the EPC memory bank. When writing a tag, the umi and xpc fields will be ignored when encoding the URI into the tag.
 To aid in decoding, any control information fields that appear in a URI must occur in alphabetical order (the same order as in the table above). **Non-Normative**: Examples: The following examples illustrate the use of control information fields in the EPC Tag URI and EPC Raw URI.
- 2533 urn:epc:tag:sgtin-96:3.0614141.112345.400
- 2534This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set to2535zero, no user memory (user memory indicator = 0), and not recommissioned (extended PC =25360). This illustrates back-compatibility with earlier versions of the Tag Data Standard.
- 2537 urn:epc:tag:[att=x01]:sgtin-96:3.0614141.112345.400
- 2538This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set to2539one, no user memory (user memory indicator = 0), and not recommissioned (extended PC =25400). This URI might be specified by an application wishing to commission a tag with the2541hazardous material bit set to one and the filter bits and EPC as shown.
- 2542 urn:epc:raw:[att=x01][umi=1][xpc=x0004]:96.x1234567890ABCDEF01234567
- 2543This is a tag with toggle=0, random data in bits 20h onward (not decodable as an EPC), the2544hazardous material attribute bit set to one, non-zero contents in user memory, and has been2545recommissioned (as indicated by the extended PC).
- 2546 urn:epc:raw:[xpc=x0001]:96.xC1.x1234567890ABCDEF01234567
- This is a tag with toggle=1, Application Family Indicator = C1 (hexadecimal), and has had its user memory killed (as indicated by the extended PC).

2549 12.3 EPC Tag URI and EPC Pure Identity URI

2550 The Pure Identity EPC URI as defined in Section 6 is a representation of an EPC for use in 2551 information systems. The only information in a Pure Identity EPC URI is the EPC itself. The EPC Tag 2552 URI, in contrast, contains additional information: it specifies the contents of all control information fields in the EPC memory bank, and it also specifies which encoding scheme is used to encode the 2553 2554 EPC into binary. Therefore, to convert a Pure Identity EPC URI to an EPC Tag URI, additional 2555 information must be provided. Conversely, to extract a Pure Identity EPC URI from an EPC Tag URI, 2556 this additional information is removed. The procedures in this section specify how these conversions 2557 are done.

2558 12.3.1 EPC Binary Coding Schemes

- 2559 For each EPC scheme as specified in Section δ_{i} , there are one or more corresponding EPC Binary 2560 Coding Schemes that determine how the EPC is encoded into binary representation for use in RFID 2561 tags. When there is more than one EPC Binary Coding Scheme available for a given EPC scheme, a 2562 user must choose which binary coding scheme to use. In general, the shorter binary coding schemes result in fewer bits and therefore permit the use of less expensive RFID tags containing less 2563 memory, but are restricted in the range of serial numbers that are permitted. The longer binary 2564 2565 coding schemes allow for the full range of serial numbers permitted by the GS1 General 2566 Specifications, but require more bits and therefore more expensive RFID tags.
- 2567It is important to note that two EPCs are the same if and only if the Pure Identity EPC URIs are2568character for character identical. A long binary encoding (e.g., SGTIN-198) is *not* a different EPC2569from a short binary encoding (e.g., SGTIN-96) if the GS1 Company Prefix, item reference with2570indicator, and serial numbers are identical.

2571 2572

The following table enumerates the available EPC binary coding schemes, and indicates the limitations imposed on serial numbers.

2573 **Table 12-2** EPC Binary Coding Schemes and their limitations

EPC Scheme	EPC Binary Coding Scheme	EPC + Filter Bit Count	Includes Filter Value	Serial number limitation
sgtin	sgtin-96	96	Yes	Numeric-only, no leading zeros, decimal value must be less than 2 ³⁸ (i.e., decimal value less than or equal to 274,877,906,943).
	sgtin-198	198	Yes	All values permitted by GS1 General Specifications (up to 20 alphanumeric characters)
SSCC	sscc-96	96	Yes	All values permitted by GS1 General Specifications (11 – 5 decimal digits including extension digit, depending on GS1 Company Prefix length)
sgln	sgln-96	96	Yes	Numeric-only, no leading zeros, decimal value must be less than 2 ⁴¹ (i.e., decimal value less than or equal to 2,199,023,255,551).
	sgln-195	195	Yes	All values permitted by GS1 General Specifications (up to 20 alphanumeric characters)
grai	grai-96	96	Yes	Numeric-only, no leading zeros, decimal value must be less than 2 ³⁸ (i.e., decimal value less than or equal to 274,877,906,943).
	grai-170	170	Yes	All values permitted by GS1 General Specifications (up to 16 alphanumeric characters)
giai	giai-96	96	Yes	Numeric-only, no leading zeros, decimal value must be less than a limit that varies according to the length of the GS1 Company Prefix. See Section <u>14.5.5.1</u> .
	giai-202	202	Yes	All values permitted by GS1 General Specifications (up to 18 – 24 alphanumeric characters, depending on company prefix length)
gsrn	gsrn-96	96	Yes	All values permitted by GS1 General Specifications (11 – 5 decimal digits, depending on GS1 Company Prefix length)
gsrnp	gsrnp-96	96	YES	All values permitted by GS1 General Specifications (11 – 5 decimal digits, depending on GS1 Company Prefix length)
gdti	gdti-96	96	Yes	Numeric-only, no leading zeros, decimal value must be less than 2 ⁴¹ (i.e., decimal value less than or equal to 2,199,023,255,551).
	gdti-113 (DEPRECATED as of TDS 1.9)	113	Yes	All values permitted by GS1 General Specifications prior to [GS1GS12.0] (up to 17 decimal digits, with or without leading zeros)

EPC Scheme	EPC Binary Coding Scheme	EPC + Filter Bit Count	Includes Filter Value	Serial number limitation
	gdti-174	174	Yes	All values permitted by GS1 General Specifications (up to 17 alphanumeric characters)
sgcn	sgcn-96	96	Yes	Numeric only, up to 12 decimal digits, with or without leading zeros.
itip	itip-110	110	Yes	Numeric-only, no leading zeros, decimal value must be less than 2 ³⁸ (i.e., decimal value less than or equal to 274,877,906,943).
	itip-212	212	Yes	All values permitted by GS1 General Specifications (up to 20 alphanumeric characters)
gid	gid-96	96	No	Numeric-only, no leading zeros, decimal value must be less than 2 ³⁶ (i.e., decimal value must be less than or equal to 68,719,476,735).
usdod	usdod-96	96	See "United States Department of Defense Supplier's Passive RFID Information Guide" that can be obtained at the United States Department of Defense's web site (http://www.dodrfid.org/supplierguide.htm).	
adi	adi-var	Variable	Yes See Section <u>14.5.12.1</u>	
cpi	срі-96	96	Yes	Serial Number: Numeric-only, no leading zeros, decimal value must be less than 2 ³¹ (i.e., decimal value less than or equal to 2,147,483,647). The component/part reference is also limited to values that are numeric-only, with no leading zeros, and whose length is less than or equal to
				15 minus the length of the GS1 Company Prefix
	cpi-var	Variable	Yes	All values permitted by GS1 General Specifications (up to 12 decimal digits, no leading zeros).

Non-Normative: Explanation: For the SGTIN, SGLN, GRAI, and GIAI EPC schemes, the serial number according to the GS1 General Specifications is a variable length, alphanumeric string. This means that serial number *34*, *034*, *0034*, etc, are all different serial numbers, as are *P34*, *34P*, *0P34*, *P034*, and so forth. In order to provide for up to 20 alphanumeric characters, 140 bits are required to encode the serial number. This is why the "long" binary encodings all have such a large number of bits. Similar considerations apply to the GDTI EPC scheme, except that the GDTI only allows digit characters (but still permits leading zeros).

In order to accommodate the very common 96-bit RFID tag, additional binary coding schemes are introduced that only require 96 bits. In order to fit within 96 bits, some serial numbers have to be excluded. The 96-bit encodings of SGTIN, SGLN, GRAI, GIAI, and GDTI are limited to serial numbers that consist only of digits, which do not have leading zeros (unless the serial number consists in its entirety of a single *o* digit), and whose value when considered as a decimal numeral is less than 2^B, where B is the number of bits available in the binary coding scheme. The choice to exclude serial numbers with leading zeros was an arbitrary design choice at the time the 96-bit encodings were first defined; for example, an alternative would have been to permit leading zeros, at the expense of excluding other serial numbers. But it is impossible to escape the fact that in B bits there can be no more than 2^B different serial numbers.

2592When decoding a "long" binary encoding, it is not permissible to strip off leading zeros when2593the binary encoding includes leading zero characters. Likewise, when encoding an EPC into2594either the "short" or "long" form, it is not permissible to strip off leading zeros prior to

2595 2596	encoding. This means that EPCs whose serial numbers have leading zeros can only be encoded in the "long" form.
2597	In certain applications, it is desirable for the serial number to always contain a specific

2597In certain applications, it is desirable for the serial number to always contain a specific2598number of characters. Reasons for this may include wanting a predictable length for the EPC2599URI string, or for having a predictable size for a corresponding barcode encoding of the same2600identifier. In certain barcode applications, this is accomplished through the use of leading2601zeros. If 96-bit tags are used, however, the option to use leading zeros does not exist.

2602Therefore, in applications that both require 96-bit tags and require that the serial number be2603a fixed number of characters, it is recommended that numeric serial numbers be used that2604are in the range $10^{D} \le serial < 10^{D+1}$, where D is the desired number of digits. For example, if260511-digit serial numbers are desired, an application can use serial numbers in the range260610,000,000,000 through 99,999,999. Such applications must take care to use serial2607numbers that fit within the constraints of 96-bit tags. For example, if 12-digit serial numbers2608are desired for SGTIN-96 encodings, then the serial numbers must be in the range2609100,000,000 through 274,877,906,943.

2610It should be remembered, however, that many applications do not require a fixed number of2611characters in the serial number, and so all serial numbers from 0 through the maximum value2612(without leading zeros) may be used with 96-bit tags.

2613 12.3.2 EPC Pure Identity URI to EPC Tag URI

2614 Given:

2615

2616

2617

2618 2619

2620

2621

2625 2626

2627

2628

2631

2632

2633

2634

2635

- An EPC Pure Identity URI as specified in Section <u>6.3</u>. This is a string that matches the EPC-URI production of the grammar in Section <u>6.3</u>.
 - A selection of a binary coding scheme to use. This is one of the binary coding schemes specified in the "EPC Binary Coding Scheme" column of <u>Table 12-2</u>. The chosen binary coding scheme must be one that corresponds to the EPC scheme in the EPC Pure Identity URI.
- A filter value, if the "Includes Filter Value" column of <u>Table 12-2</u> indicates that the binary encoding includes a filter value.
- 2622 The value of the attribute bits.
- 2623 The value of the user memory indicator.

2624 Validation:

- The serial number portion of the EPC (the characters following the rightmost dot character) must conform to any restrictions implied by the selected binary coding scheme, as specified by the "Serial Number Limitation" column of <u>Table 12-2</u>.
- The filter value must be in the range $0 \le filter \le 7$.

2629 Procedure:

- 2630 1. Starting with the EPC Pure Identity URI, replace the prefix urn:epc:id: with urn:epc:tag:.
 - 2. Replace the EPC scheme name with the selected EPC binary coding scheme name. For example, replace sgtin with sgtin-96 or sgtin-198.
 - If the selected binary coding scheme includes a filter value, insert the filter value as a single decimal digit following the rightmost colon (":") character of the URI, followed by a dot (".") character.
- 26364. If the attribute bits are non-zero, construct a string [att=xNN], where NN is the value of the2637attribute bits as a 2-digit hexadecimal numeral.
- 2638 5. If the user memory indicator is non-zero, construct a string [umi=1].
- 2639
 2640
 6. If Step 4 or Step 5 yielded a non-empty string, insert those strings following the rightmost colon (":") character of the URI, followed by an additional colon character.

2641 7. The resulting string is the EPC Tag URI.

2642 12.3.3 EPC Tag URI to EPC Pure Identity URI

2643	Given:
2644	1. An E
2645	of th

- An EPC Tag URI as specified in Section <u>12</u>. This is a string that matches the TagURI production of the grammar in Section <u>12.4</u>.
- 2646 **Procedure**:
- 2647 1. Starting with the EPC Tag URI, replace the prefix urn:epc:tag: with urn:epc:id:.
- 26482. Replace the EPC binary coding scheme name with the corresponding EPC scheme name. For
example, replace sgtin-96 or sgtin-198 with sgtin.
- 26503. If the coding scheme includes a filter value, remove the filter value (the digit following the
rightmost colon character) and the following dot (".") character.
- 26524. If the URI contains one or more control fields as specified in Section <u>12.2.2</u>, remove them and
the following colon character.
- 2654 5. The resulting string is the Pure Identity EPC URI.

2655 12.4 Grammar

- 2656The following grammar specifies the syntax of the EPC Tag URI and EPC Raw URI. The grammar2657makes reference to grammatical elements defined in Sections 5 and 6.3.2658TagOrRawURI ::= TagURI | RawURI2659TagURI ::= "urn:epc:tag:" TagURIControlBody2660TagURIControlBody ::= (ControlField+ ":")? TagURIBody
- TagURIBody ::= SGTINTagURIBody | SSCCTagURIBody | SGLNTagURIBody | 2661 GRAITagURIBody | GIAITagURIBody | GDTITagURIBody | GSRNTagURIBody 2662 GSRNPTagURIBody | ITIPTagURIBody | GIDTagURIBody | SGCNTagURIBody | 2663 DODTagURIBody | ADITagUriBody | CPITagURIBody 2664 2665 SGTINTagURIBody ::= SGTINEncName ":" NumericComponent "." SGTINURIBody SGTINEncName ::= "sgtin-96" | "sgtin-198" 2666 2667 SSCCTagURIBody ::= SSCCEncName ":" NumericComponent "." SSCCURIBody SSCCEncName ::= "sscc-96" 2668 2669 SGLNTagURIBody ::= SGLNEncName ":" NumericComponent "." SGLNURIBody SGLNEncName ::= "sgln-96" | "sgln-195" 2670 GRAITagURIBody ::= GRAIEncName ":" NumericComponent "." GRAIURIBody 2671 GRAIEncName ::= "grai-96" | "grai-170" 2672 2673 GIAITagURIBody ::= GIAIEncName ":" NumericComponent "." GIAIURIBody GIAIEncName ::= "giai-96" | "giai-202" 2674 2675 GSRNTagURIBody ::= GSRNEncName ":" NumericComponent "." GSRNURIBody 2676 GSRNEncName ::= "gsrn- 96" GSRNPEncName ::= "gsrnp-96" 2677 GDTITagURIBody ::= GDTIEncName ":" NumericComponent "." GDTIURIBody 2678 GDTIEncName ::= "gdti-96" | "gdti-113" | "gdti-174" 2679 2680 CPITagURIBody ::= CPIEncName ":" NumericComponent "." CPIURIBody 2681 CPIEncName ::= "cpi-96" | "cpi-var" 2682 SGCNTagURIBody ::= SGCNEncName ":" NumericComponent "." SGCNURIBody 2683 SGCNEncName ::= "sgcn-96" ITIPTaqURIBody ::= ITIPEncName ":" NumericComponent "." ITIPURIBody 2684 2685 ITIPEncName ::= "itip-110" | "itip-212" 2686 GIDTagURIBody ::= GIDEncName ":" GIDURIBody

2687	GIDEncName ::= "gid-96"
2688	DODTagURIBody ::= DODEncName ":" NumericComponent "." DODURIBody
2689	DODEncName ::= "usdod-96"
2690	ADITagURIBody ::= ADIEncName ":" NumericComponent "." ADIURIBody
2691	ADIEncName ::= "adi-var"
2692	RawURI ::= "urn:epc:raw:" RawURIControlBody
2693	RawURIControlBody ::= (ControlField+ ":")? RawURIBody
2694	RawURIBody ::= DecimalRawURIBody HexRawURIBody AFIRawURIBody
2695	DecimalRawURIBody ::= NonZeroComponent "." NumericComponent
2696	HexRawURIBody ::= NonZeroComponent ".x" HexComponentOrEmpty
2697	AFIRawURIBody ::= NonZeroComponent ".x" HexComponent ".x"
2698	HexComponentOrEmpty
2699	ControlField ::= "[" ControlName "=" ControlValue "]"
2700	ControlName ::= "att" "umi" "xpc"
2701	ControlValue ::= BinaryControlValue HexControlValue
2702	BinaryControlValue ::= "0" "1"
2703	HexControlValue ::= "x" HexComponent

2704 13 URIs for EPC Tag Encoding patterns

- Certain software applications need to specify rules for filtering lists of tags according to various
 criteria. This specification provides an EPC Tag Pattern URI for this purpose. An EPC Tag Pattern URI
 does not represent a single tag encoding, but rather refers to a set of tag encodings. A typical
 pattern looks like this:
- 2709 urn:epc:pat:sgtin-96:3.0652642.[102400-204700].*
- 2710This pattern refers to any tag containing a 96-bit SGTIN EPC Binary Encoding, whose Filter field is 3,2711whose GS1 Company Prefix is 0652642, whose Item Reference is in the range $102400 \le$ 2712*itemReference* \le 204700, and whose Serial Number may be anything at all.
- 2713In general, there is an EPC Tag Pattern URI scheme corresponding to each EPC Binary Encoding2714scheme, whose syntax is essentially identical except that ranges or the star (*) character may be2715used in each field.
- 2716For the SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN, GDTI, SGCN and ITIP patterns, the pattern syntax2717slightly restricts how wildcards and ranges may be combined. Only two possibilities are permitted2718for the CompanyPrefix field. One, it may be a star (*), in which case the following field2719(ItemReference, SerialReference, LocationReference,
- 2720AssetType, IndividualAssetReference, ServiceReference, DocumentType,2721CouponReference, Piece or Total) must also be a star. Two, it may be a specific company2722prefix, in which case the following field may be a number, a range, or a star. A range may not be2723specified for the CompanyPrefix.
- Non-Normative: Explanation: Because the company prefix is variable length, a range may
 not be specified, as the range might span different lengths. When a particular company prefix
 is specified, however, it is possible to match ranges or all values of the following field,
 because its length is fixed for a given company prefix. The other case that is allowed is when
 both fields are a star, which works for all tag encodings because the corresponding tag fields
 (including the Partition field, where present) are simply ignored.
- 2730 The pattern URI for the DoD Construct is as follows:
- 2731 urn:epc:pat:usdod-96:filterPat.CAGECodeOrDODAACPat.serialNumberPat
- 2732where filterPat is either a filter value, a range of the form [lo-hi], or a * character;2733CAGECodeOrDODAACPat is either a CAGE Code/DODAAC or a * character; and serialNumberPat2734is either a serial number, a range of the form [lo-hi], or a * character.

2735		The pattern URI for the Aerospace and Defense (ADI) identifier is as follows:
2736 2737		urn:epc:pat:adi- var:filterPat.CAGECodeOrDODAACPat.partNumberPat.serialNumberPat
2738 2739 2740 2741		where <i>filterPat</i> is either a filter value, a range of the form [<i>lo-hi</i>], or a * character; <i>CAGECodeOrDODAACPat</i> is either a CAGE Code/DODAAC or a * character; <i>partNumberPat</i> is either an empty string, a part number, or a * character; and <i>serialNumberPat</i> is either a serial number or a * character.
2742		The pattern URI for the Component / Part (CPI) identifier is as follows:
2743		urn:epc:pat:cpi-96:filterPat.CPI96PatBody.serialNumberPat
2744		or
2745		urn:epc:pat:cpi-var:filterPat.CPIVarPatBody
2746 2747 2748 2749 2750 2751 2752		where <i>filterPat</i> is either a filter value, a range of the form $[lo-hi]$, or a * character; CPI96PatBody is either *.* or a GS1 Company Prefix followed by a dot and either a numeric component/part number, a range in the form $[lo-hi]$, or a * character; <i>serialNumberPat</i> is either a serial number or a * character or a range in the form $[lo-hi]$; and <i>CPIVarPatBody</i> is either *.*.* or a GS1 Company Prefix followed by a dot followed by a component/part reference followed by a dot followed by either a component/part serial number, a range in the form $[lo-hi]$ or a * character.
2753	13.1	Syntax

53 **13.1 Synta**

2754	The syntax of EPC Tag Pattern URIs is defined by the grammar below.
2755	PatURI ::= "urn:epc:pat:" PatBody
2756	PatBody ::= GIDPatURIBody SGTINPatURIBody SGTINAlphaPatURIBody
2757	SGLNGRAI96PatURIBody SGLNGRAIAlphaPatURIBody SSCCPatURIBody
2758	GIAI96PatURIBody GIAIAlphaPatURIBody GSRNPatURIBody GSRNPPatURIBody
2759 2760	GDTIPatURIBody CPIVarPatURIBody SGCNPatURIBody ITIPPatURIBody
	USDOD96PatURIBody ITIP212PatURIBody ADIVarPatURIBody CPI96PatURIBody
2761	GIDPatURIBody ::= "gid-96:" 2*(PatComponent ".") PatComponent
2762	SGTIN96PatURIBody ::= "sgtin-96:" PatComponent "." GS1PatBody "."
2763	PatComponent
2764	SGTINAlphaPatURIBody ::= "sgtin-198:" PatComponent "." GS1PatBody "."
2765	GS3A3PatComponent
2766	SGLNGRAI96PatURIBody ::= SGLNGRAI96TagEncName ":" PatComponent "."
2767	GS1EPatBody "." PatComponent
2768	SGLNGRAI96TagEncName ::= "sgln-96" "grai-96"
2769	SGLNGRAIAlphaPatURIBody ::= SGLNGRAIAlphaTagEncName ":" PatComponent "."
2770	GS1EPatBody "." GS3A3PatComponent
2771	SGLNGRAIAlphaTagEncName ::= "sgln-195" "grai-170"
2772	SSCCPatURIBody ::= "sscc-96:" PatComponent "." GS1PatBody
2773	GIAI96PatURIBody ::= "giai-96:" PatComponent "." GS1PatBody
2774	GIAIAlphaPatURIBody ::= "giai-202:" PatComponent "." GS1GS3A3PatBody
2775	GSRNPatURIBody ::= "gsrn- 96:" PatComponent "." GS1PatBody
2776	GSRNPPatURIBody ::= "gsrnp-96:" PatComponent "." GS1PatBody
2777	GDTIPatURIBody ::= GDTI96PatURIBody GDTI113PatURIBody GDTI174PatURIBody
2778	GDTI96PatURIBody ::= "gdti-96:" PatComponent "." GS1EPatBody "."
2779	PatComponent
2780	GDTI113PatURIBody ::= "gdti-113:" PatComponent "." GS1EPatBody "."
2781	PaddedNumericOrStarComponent
2782	GDTI174PatURIBody ::= "gdti-174:" PatComponent "." GS1EPatBody "."
2783	GS1GS3A3PatBody
2784	CPI96PatURIBody ::= "cpi-96:" PatComponent "." GS1PatBody "." PatComponent

2785	CPIVarPatURIBody ::= "cpi-var:" PatComponent "." CPIVarPatBody		
2786	CPIVarPatBody ::= "*.*.*"		
2787	PaddedNumericComponent "." CPRefComponent "." PatComponent		
2788	SGCNPatURIBody ::= SGCN96PatURIBody		
2789	SGCN96PatURIBody ::= "sgcn-96:" PatComponent "." GS1EPatBody "."		
2790	PaddedNumericOrStarComponent		
2791	USDOD96PatURIBody ::= "usdod-96:" PatComponent "." CAGECodeOrDODAACPat "."		
2792	PatComponent		
2793	ADIVarPatURIBody ::= "adi-var:" PatComponent "." CAGECodeOrDODAACPat "."		
2794	ADIPatComponent "." ADIExtendedPatComponent		
2795	PaddedNumericOrStarComponent ::= PaddedNumericComponent		
2796	StarComponent		
2797	GS1PatBody ::= "*.*" (PaddedNumericComponent "." PaddedPatComponent)		
2798	GS1EPatBody ::= "*.*" (PaddedNumericComponent "."		
2799	PaddedOrEmptyPatComponent)		
2800	GS1GS3A3PatBody ::= "*.*" (PaddedNumericComponent "." GS3A3PatComponent)		
2801	PatComponent ::= NumericComponent		
2802	StarComponent		
2803	RangeComponent		
2804	PaddedPatComponent ::= PaddedNumericComponent		
2805	StarComponent		
2806	RangeComponent		
2807	PaddedOrEmptyPatComponent ::= PaddedNumericComponentOrEmpty		
2808	StarComponent		
2809	RangeComponent		
2810	GS3A3PatComponent ::= GS3A3Component StarComponent		
2811	CAGECodeOrDODAACPat ::= CAGECodeOrDODAAC StarComponent		
2812	ADIPatComponent::= ADIComponent StarComponent		
2813	ADIExtendedPatComponent ::= ADIExtendedComponent StarComponent		
2814	<pre>StarComponent ::= "*"</pre>		
2815	RangeComponent ::= "[" NumericComponent "-"		
2816	NumericComponent "]"		
2017	For a Dawney Comments to be legal, the numeric value of the first Numeric Comments must be		

2817For a RangeComponent to be legal, the numeric value of the first NumericComponent must be2818less than or equal to the numeric value of the second NumericComponent.

2819 13.2 Semantics

2830

- 2820The meaning of an EPC Tag Pattern URI (urn:epc:pat:) is formally defined as denoting a set of2821EPC Tag URIs.
- 2822The set of EPCs denoted by a specific EPC Tag Pattern URI is defined by the following decision2823procedure, which says whether a given EPC Tag URI belongs to the set denoted by the EPC Tag2824Pattern URI.
- 2825Let urn:epc:pat:EncName:P1.P2...Pn be an EPC Tag Pattern URI. Let2826urn:epc:tag:EncName:C1.C2...Cn be an EPC Tag URI, where the EncName field of both URIs2827is the same. The number of components (n) depends on the value of EncName.
- 2828First, any EPC Tag URI component Ci is said to match the corresponding EPC Tag Pattern URI2829component Pi if:
 - Pi is a NumericComponent, and Ci is equal to Pi; or
- 2831Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as well as in2832length; or
- 2833Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or CPRefComponent2834and Ci is equal to Pi, character for character; or

2835	 Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or
2836	• Pi is a RangeComponent [lo-hi], and $lo \leq Ci \leq hi$; or
2837	 Pi is a StarComponent (and Ci is anything at all)
2838 2839	Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and only if Ci matches Pi for all $1 \le i \le n$.

2840 **14 EPC Binary Encoding**

2841This section specifies how EPC Tag URIs are encoded into binary strings, and conversely how a2842binary string is decoded into an EPC Tag URI (if possible). The binary strings defined by the2843encoding and decoding procedures herein are suitable for use in the EPC memory bank of a Gen 22844tag, as specified in Section <u>14.5.12</u>.

2845The complete procedure for encoding an EPC Tag URI into the binary contents of the EPC memory2846bank of a Gen 2 tag is specified in Section <u>15.1.1</u>. The procedure in Section <u>15.1.1</u> uses the2847procedure defined below in Section <u>14.3</u> to do the bulk of the work. Conversely, the complete2848procedure for decoding the binary contents of the EPC memory bank of a Gen 2 tag into an EPC Tag2849URI (or EPC Raw URI, if necessary) is specified in Section <u>15.2.2</u>. The procedure in Section <u>15.2.2</u>2850uses the procedure defined below in Section <u>14.3.9</u> to do the bulk of the work.

2851 14.1 Overview of Binary Encoding

- 2852The general structure of an EPC Binary Encoding as used on a tag is as a string of bits (i.e., a binary2853representation), consisting of a fixed length header followed by a series of fields whose overall2854length, structure, and function are determined by the header value. The assigned header values are2855specified in Section <u>14.2</u>.
- 2856The procedures for converting between the EPC Tag URI and the binary encoding are specified in2857Section <u>14.3</u> (encoding URI to binary) and Section <u>14.3.9</u> (decoding binary to URI). Both the2858encoding and decoding procedures are driven by coding tables specified in Section <u>14.4.9</u>. Each2859coding table specifies, for a given header value, the structure of the fields following the header.
- 2860To convert an EPC Tag URI to the EPC Binary Encoding, follow the procedure specified in2861Section <u>14.3</u>, which is summarised as follows. First, the appropriate coding table is selected from2862among the tables specified in Section <u>14.4.9</u>. The correct coding table is the one whose "URI2863Template" entry matches the given EPC Tag URI. Each column in the coding table corresponds to a2864bit field within the final binary encoding. Within each column, a "Coding Method" is specified that2865says how to calculate the corresponding bits of the binary encoding, given some portion of the URI2866as input. The encoding details for each "Coding Method" are given in subsections of Section <u>14.3</u>.
- 2867 To convert an EPC Binary Encoding into an EPC Tag URI, follow the procedure specified in 2868 Section <u>14.3.9</u>, which is summarised as follows. First, the most significant eight bits are looked up in 2869 the table of EPC binary headers (*Table 14-1* in Section 14.2). This identifies the EPC coding scheme, 2870 which in turn selects a coding table from among those specified in Section <u>14.4.9</u>. Each column in 2871 the coding table corresponds to a bit field in the input binary encoding. Within each column, a 2872 "Coding Method" is specified that says how to calculate a corresponding portion of the output URI, given that bit field as input. The decoding details for each "Coding Method" are given in subsections 2873 2874 of Section 14.3.9.

2875 **14.2 EPC Binary Headers**

2876The general structure of an EPC Binary Encoding as used on a tag is as a string of bits (i.e., a binary
representation), consisting of a fixed length, 8 bit, header followed by a series of fields whose
overall length, structure, and function are determined by the header value. For future expansion
purpose, a header value of 11111111 is defined, to indicate that longer header beyond 8 bits is
used; this provides for future expansion so that more than 256 header values may be
accommodated by using longer headers. Therefore, the present specification provides for up to 255
8-bit headers, plus a currently undetermined number of longer headers.

Non-Normative: Back-compatibility note: In a prior version of the Tag Data Standard, the header was of variable length, using a tiered approach in which a zero value in each tier indicated that the header was drawn from the next longer tier. For the encodings defined in the earlier specification, headers were either 2 bits or 8 bits. Given that a zero value is reserved to indicate a header in the next longer tier, the 2-bit header had 3 possible values (01, 10, and 11, not 00), and the 8-bit header had 63 possible values (recognising that the first 2 bits must be 00 and 00000000 is reserved to allow headers that are longer than 8 bits). The 2-bit headers were only used in conjunction with certain 64-bit EPC Binary Encodings.

2892	In this version of the Tag Data Standard, the tiered header approach has been abandoned.
2893	Also, all 64-bit encodings (including all encodings that used 2-bit headers) have been
2894	deprecated, and should not be used in new applications. To facilitate an orderly transition, the
2895	portions of header space formerly occupied by 64-bit encodings are reserved in this version of
2896	the Tag Data Standard, with the intention that they be reclaimed after a "sunset date" has
2897	passed. After the "sunset date," tags containing 64-bit EPCs with 2-bit headers and tags with
2898	64-bit headers starting with 00001 will no longer be properly interpreted.

2899The encoding schemes defined in this version of the EPC Tag Data Standard are shown in <u>Table</u>2900<u>14-1</u>. The table also indicates currently unassigned header values that are "Reserved for Future2901Use" (RFU). All header values that had been reserved for legacy 64-bit encodings, defined in prior2902versions of the EPC Tag Data Standard, were sunset, effective 1 July, 2009, as previously2903announced by EPCglobal on 1 July, 2006.

Header Value (binary)	Header Value (hexadecimal)	Encoding Length (bits)	Coding Scheme
0000 0000	00	NA	Unprogrammed Tag
0000 0001	01	NA	Reserved for Future Use
0000 001x	02,03	NA	Reserved for Future Use
0000 01xx	04,05	NA	Reserved for Future Use
	06,07	NA	Reserved for Future Use
0000 1000	08		Reserved for Future Use
0000 1001	09		Reserved for Future Use
0000 1010	OA		Reserved for Future Use
0000 1011	ОВ		Reserved for Future Use
0000 1100	OC		Reserved for Future Use
to	to		
0000 1111	OF		
0001 0000	10	NA	Reserved for Future Use
to	to		
0010 1011	2B	NA	
0010 1100	2C	96	GDTI-96
0010 1101	2D	96	GSRN-96
0010 1110	2E	96	GSRNP
0010 1111	2F	96	USDoD-96
0011 0000	30	96	SGTIN-96
0011 0001	31	96	SSCC-96

Table 14-1 EPC Binary Header Values

Header Value (binary)	Header Value (hexadecimal)	Encoding Length (bits)	Coding Scheme
0011 0010	32	96	SGLN-96
0011 0011	33	96	GRAI-96
0011 0100	34	96	GIAI-96
0011 0101	35	96	GID-96
0011 0110	36	198	SGTIN-198
0011 0111	37	170	GRAI-170
0011 1000	38	202	GIAI-202
0011 1001	39	195	SGLN-195
0011 1010	3A	113	GDTI-113 (DEPRECATED as of TDS 1.9)
0011 1011	3B	Variable	ADI-var
0011 1100	3C	96	CPI-96
0011 1101	3D	Variable	CPI-var
0011 1110	3E	174	GDTI-174
0011 1111	3F	96	SGCN-96
0100 0000	40	110	ITIP-110
0100 0001	41	212	ITIP-212
0100 0010	42		Reserved for Future Use
to	to		
0111 1111	7F		
1000 0000	80		Reserved for Future Use
to	to		
1011 1111	BF		
1100 0000 to	CO to		Reserved for Future Use
1100 1101	CD		
1100 1110	CE		Reserved for Future Use
1100 1111	CF		Reserved for Future Use
to	to		
1110 0001	E1		
1110 0010	E2		E2 remains PERMANENTLY RESERVED to avoid confusion with the first eight bits of TID memory (Section <u>16</u>).
1110 0011	E3		Reserved for Future Use
to	to		
1111 1110	FE		
1111 1111	FF	NA	Reserved for Future Use
			(expressly reserved for headers longer than 8 bits)

2905 14.3 Encoding procedure

2906 2907

2908

The following procedure encodes an EPC Tag URI into a bit string containing the encoded EPC and (for EPC schemes that have a filter value) the filter value. This bit string is suitable for storing in the EPC memory bank of a Gen 2 Tag beginning at bit 20h. See Section <u>15.1.1</u> for the complete

2909 2910 2911		procedure for encoding the entire EPC memory bank, including control information that resides outside of the encoded EPC. (The procedure in Section $15.1.1$ uses the procedure below as a subroutine.)				
2912		Given:				
2913		 An EPC Tag URI of the form urn:epc:tag:scheme:remainder 				
2914		Yields:				
2915 2916		 A bit string containing the EPC binary encoding of the specified EPC Tag URI, containing the encoded EPC together with the filter value (if applicable); OR 				
2917		 An exception indicating that the EPC Tag URI could not be encoded. 				
2918		Procedure:				
2919 2920		 Use the scheme to identify the coding table for this URI scheme. If no such scheme exists, stop: this URI is not syntactically legal. 				
2921 2922		2. Confirm that the URI syntactically matches the URI template associated with the coding table. If not, stop: this URI is not syntactically legal.				
2923 2924 2925 2926 2927 2928 2929		3. Read the coding table left-to-right, and construct the encoding specified in each column to obtain a bit string. If the "Coding Segment Bit Count" row of the table specifies a fixed number of bits, the bit string so obtained will always be of this length. The method for encoding each column depends on the "Coding Method" row of the table. If the "Coding Method" row specifies a specific bit string, use that bit string for that column. Otherwise, consult the following sections that specify the encoding methods. If the encoding of any segment fails, stop: this URI cannot be encoded.				
2930 2931 2932 2933 2934		4. Concatenate the bit strings from Step 3 to form a single bit string. If the overall binary length specified by the scheme is of fixed length, then the bit string so obtained will always be of that length. The position of each segment within the concatenated bit string is as specified in the "Bit Position" row of the coding table. Section <u>15.1.1</u> specifies the procedure that uses the result of this step for encoding the EPC memory bank of a Gen 2 tag.				
2935		The following sections specify the procedures to be used in Step 3.				
2936	14.3.1	"Integer" Encoding Method				
2937 2938		The Integer encoding method is used for a segment that appears as a decimal integer in the URI, and as a binary integer in the binary encoding.				
2939		Input:				
2940		The input to the encoding method is the URI portion indicated in the "URI portion" row of the				

encoding table, a character string with no dot (".") characters.

2942 Validity Test:

2943 The input character string must satisfy the following:

- It must match the grammar for NumericComponent as specified in Section <u>5</u>.
- 2945The value of the string when considered as a decimal integer must be less than 2^b, where b is2946the value specified in the "Coding Segment Bit Count" row of the encoding table.
- 2947 If any of the above tests fails, the encoding of the URI fails.

2948 **Output**:

2949The encoding of this segment is a *b*-bit integer (padded to the left with zero bits as necessary),2950where *b* is the value specified in the "Coding Segment Bit Count" row of the encoding table, whose2951value is the value of the input character string considered as a decimal integer.

2952	14.3.2	"String" Encoding method
2953 2954		The String encoding method is used for a segment that appears as an alphanumeric string in the URI, and as an ISO 646 (ASCII) encoded bit string in the binary encoding.
2955		Input:
2956 2957		The input to the encoding method is the URI portion indicated in the "URI portion" row of the encoding table, a character string with no dot (".") characters.
2958		Validity Test:
2959		The input character string must satisfy the following:
2960		It must match the grammar for GS3A3Component as specified in Section <u>5</u> .
2961 2962 2963 2964		For each portion of the string that matches the Escape production of the grammar specified in Section <u>5</u> (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the 82 allowed characters specified in <u>Table A-1</u> .
2965 2966		The number of characters must be less than or equal to <i>b</i> /7, where <i>b</i> is the value specified in the "Coding Segment Bit Count" row of the coding table.
2967		If any of the above tests fails, the encoding of the URI fails.
2968		Output:
2969 2970 2971 2972 2973		Consider the input to be a string of zero or more characters $s_1s_2s_N$, where each character s_1 is either a single character or a 3-character sequence matching the Escape production of the grammar (that is, a 3-character sequence consisting of a s character followed by two hexadecimal digits). Translate each character to a 7-bit string. For a single character, the corresponding 7-bit string is specified in <u>Table A-1</u> . For an Escape sequence, the 7-bit string is the value of the two
2974		hexadecimal characters considered as a 7-bit integer. Concatenating those 7-bit strings in the order

binary encoding likewise totals to a constant number of bits.
The Partition Table encoding method makes use of a "partition table." The specific partition table to use is specified in the coding table for a given EPC scheme.

padding bits will be b - 7N.) The resulting *b*-bit string is the output.

corresponding to the input, then pad to the right with zero bits as necessary to total b bits, where b

is the value specified in the "Coding Segment Bit Count" row of the coding table. (The number of

The Partition Table encoding method is used for a segment that appears in the URI as a pair of

variable-length numeric fields separated by a dot (".") character, and in the binary encoding as a 3-

bit "partition" field followed by two variable length binary integers. The number of characters in the two URI fields always totals to a constant number of characters, and the number of bits in the

2986 Input:

2975

2976

2977

2978

2979

2980

2981

2982

2987The input to the encoding method is the URI portion indicated in the "URI portion" row of the2988encoding table. This consists of two strings of digits separated by a dot (".") character. For the2989purpose of this encoding procedure, the digit strings to the left and right of the dot are denoted C2990and D, respectively.

2991 Validity Test:

2992 The input must satisfy the following:

14.3.3 "Partition Table" Encoding method

- 2993 C must match the grammar for PaddedNumericComponent as specified in Section <u>5</u>.
- 2994 D must match the grammar for PaddedNumericComponentOrEmpty as specified in Section <u>5</u>.

- The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" column of the partition table. The corresponding row is called the "matching partition table row" in the remainder of the encoding procedure.
 - The number of digits in D must match the corresponding value specified in the other field digits column of the matching partition table row. Note that if the other field digits column specifies zero, then D must be the empty string, implying the overall input segment ends with a "dot" character.

3002 **Output**:

2995

2996 2997

2998

2999

3000

3001

3004

3005

3006

3007

3008

3009

3010 3011

3029

3030

3031

3032

3033 3034

3035

3038

3039

3003 Construct the output bit string by concatenating the following three components:

- The value P specified in the "partition value" column of the matching partition table row, as a 3bit binary integer.
- The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row.
- The value of D considered as a decimal integer, converted to an N-bit binary integer, where N is the number of bits specified in the other field bits column of the matching partition table row. If D is the empty string, the value of the N-bit integer is zero.
- 3012 The resulting bit string is (3 + M + N) bits in length, which always equals the "Coding Segment Bit 3013 Count" for this segment as indicated in the coding table.

3014 14.3.4 "Unpadded Partition Table" Encoding method

- The Unpadded Partition Table encoding method is used for a segment that appears in the URI as a pair of variable-length numeric fields separated by a dot (".") character, and in the binary encoding as a 3-bit "partition" field followed by two variable length binary integers. The number of characters in the two URI fields is always less than or equal to a known limit, and the number of bits in the binary encoding is always a constant number of bits.
- 3020The Unpadded Partition Table encoding method makes use of a "partition table." The specific3021partition table to use is specified in the coding table for a given EPC scheme.

3022 Input:

3023The input to the encoding method is the URI portion indicated in the "URI portion" row of the3024encoding table. This consists of two strings of digits separated by a dot (".") character. For the3025purpose of this encoding procedure, the digit strings to the left and right of the dot are denoted C3026and D, respectively.

3027 Validity Test:

- 3028 The input must satisfy the following:
 - C must match the grammar for PaddedNumericComponent as specified in Section <u>5</u>.
 - D must match the grammar for NumericComponent as specified in Section <u>5</u>.
 - The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" column of the partition table. The corresponding row is called the "matching partition table row" in the remainder of the encoding procedure.
 - The value of D, considered as a decimal integer, must be less than 2^N, where N is the number of bits specified in the other field bits column of the matching partition table row.

3036 **Output**:

- 3037 Construct the output bit string by concatenating the following three components:
 - The value P specified in the "partition value" column of the matching partition table row, as a 3bit binary integer.

3045

3065

3066

3070

3071

3072

3073

3074

3075 3076

3078

3079

3080

3081

3082

3083

- The value of *C* considered as a decimal integer, converted to an *M*-bit binary integer, where *M* is the number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row.
 The value of *D* considered as a decimal integer, converted to an *N*-bit binary integer, where *N* is
 - The value of D considered as a decimal integer, converted to an N-bit binary integer, where N is the number of bits specified in the other field bits column of the matching partition table row. If D is the empty string, the value of the N-bit integer is zero.
- 3046 The resulting bit string is (3 + M + N) bits in length, which always equals the "Coding Segment Bit 3047 Count" for this segment as indicated in the coding table.

3048 14.3.5 "String Partition Table" Encoding method

- 3049The String Partition Table encoding method is used for a segment that appears in the URI as a3050variable-length numeric field and a variable-length string field separated by a dot (".") character,3051and in the binary encoding as a 3-bit "partition" field followed by a variable length binary integer3052and a variable length binary-encoded character string. The number of characters in the two URI3053fields is always less than or equal to a known limit (counting a 3-character escape sequence as a3054single character), and the number of bits in the binary encoding is padded if necessary to a constant3055number of bits.
- The Partition Table encoding method makes use of a "partition table." The specific partition table to use is specified in the coding table for a given EPC scheme.

3058 Input:

3059The input to the encoding method is the URI portion indicated in the "URI portion" row of the3060encoding table. This consists of two strings separated by a dot (".") character. For the purpose of3061this encoding procedure, the strings to the left and right of the dot are denoted C and D,3062respectively.

3063 Validity Test:

- 3064 The input must satisfy the following:
 - C must match the grammar for PaddedNumericComponent as specified in Section <u>5</u>.
 - D must match the grammar for GS3A3Component as specified in Section <u>5</u>.
- 3067The number of digits in C must match one of the values specified in the "GS1 Company Prefix3068Digits (L)" column of the partition table. The corresponding row is called the "matching partition3069table row" in the remainder of the encoding procedure.
 - The number of characters in D must be less than or equal to the corresponding value specified in the other field maximum characters column of the matching partition table row. For the purposes of this rule, an escape triplet (%nn) is counted as one character.
 - For each portion of D that matches the Escape production of the grammar specified in Section <u>5</u> (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the 82 allowed characters specified in <u>Table A-1</u>.

3077 **Output**:

Construct the output bit string by concatenating the following three components:

- The value P specified in the "partition value" column of the matching partition table row, as a 3bit binary integer.
 - The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row.
- 3084The value of D converted to an N-bit binary string, where N is the number of bits specified in the
other field bits column of the matching partition table row. This N-bit binary string is constructed
as follows. Consider D to be a string of zero or more characters $s_1s_2...s_N$, where each character
 s_1 is either a single character or a 3-character sequence matching the Escape production of the

- 3088grammar (that is, a 3-character sequence consisting of a % character followed by two3089hexadecimal digits). Translate each character to a 7-bit string. For a single character, the3090corresponding 7-bit string is specified in <u>Table A-1</u>. For an Escape sequence, the 7-bit string is3091the value of the two hexadecimal characters considered as a 7-bit integer. Concatenate those 7-3092bit strings in the order corresponding to the input, then pad with zero bits as necessary to total3093N bits.
- The resulting bit string is (3 + M + N) bits in length, which always equals the "Coding Segment Bit Count" for this segment as indicated in the coding table.

3096 14.3.6 "Numeric String" Encoding method

3097The Numeric String encoding method is used for a segment that appears as a numeric string in the3098URI, possibly including leading zeros. The leading zeros are preserved in the binary encoding by3099prepending a "1" digit to the numeric string before encoding.

3100 Input:

3104

3105 3106

3107

3108

3109

3113

The input to the encoding method is the URI portion indicated in the "URI portion" row of the encoding table, a character string with no dot (".") characters.

3103 Validity Test:

The input character string must satisfy the following:

- It must match the grammar for PaddedNumericComponent as specified in Section <u>5</u>.
- The number of digits in the string, D, must be such that $2 \times 10^{D} < 2^{b}$, where *b* is the value specified in the "Coding Segment Bit Count" row of the encoding table. (For the GDTI-113 scheme, *b* = 58 and therefore the number of digits D must be less than or equal to 17. GDTI-113 and SGCN-96 are the only schemes that uses this encoding method.)
- 3110 If any of the above tests fails, the encoding of the URI fails.

3111 **Output**:

- 3112 Construct the output bit string as follows:
 - Prepend the character "1" to the left of the input character string.
- Convert the resulting string to a *b*-bit integer (padded to the left with zero bits as necessary), where *b* is the value specified in the "bit count" row of the encoding table, whose value is the value of the input character string considered as a decimal integer.

3117 14.3.7 "6-bit CAGE/DODAAC" Encoding method

3118The 6-Bit CAGE/DoDAAC encoding method is used for a segment that appears as a 5-character3119CAGE code or 6-character DoDAAC in the URI, and as a 36-bit encoded bit string in the binary3120encoding.

3121 Input:

The input to the encoding method is the URI portion indicated in the "URI portion" row of the encoding table, a 5- or 6-character string with no dot (".") characters.

3124 Validity Test:

- 3125 The input character string must satisfy the following:
- It must match the grammar for CAGECodeOrDODAAC as specified in Section <u>6.3.14</u>.
- 3127 If the above test fails, the encoding of the URI fails.

3128	Output:
------	---------

3129Consider the input to be a string of five or six characters $d_1d_2...d_N$, where each character d_i is a3130single character. Translate each character to a 6-bit string using Table G-1 (G). Concatenate those31316-bit strings in the order corresponding to the input. If the input was five characters, prepend the 6-3132bit value 100000 to the left of the result. The resulting 36-bit string is the output.

3133 14.3.8 "6-Bit Variable String" Encoding method

The 6-Bit Variable String encoding method is used for a segment that appears in the URI as a string field, and in the binary encoding as variable length null-terminated binary-encoded character string.

3136 Input:

3141

3142

3143 3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3137The input to the encoding method is the URI portion indicated in the "URI portion" row of the
encoding table.

3139 Validity Test:

- 3140 The input must satisfy the following:
 - The input must match the grammar for the corresponding portion of the URI as specified in the appropriate subsection of Section <u>6.3</u>.
 - The number of characters in the input must be greater than or equal to the minimum number of characters and less than or equal to the maximum number of characters specified in the footnote to the coding table for this coding table column. For the purposes of this rule, an escape triplet (%nn) is counted as one character.
 - For each portion of the input that matches the Escape production of the grammar specified in Section <u>5</u> (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the characters specified in <u>Table G-1</u> (<u>G</u>), and the character so mapped must satisfy any other constraints specified in the coding table for this coding segment.
 - For each portion of the input that is a single character (as opposed to a 3-character escape sequence), that character must satisfy any other constraints specified in the coding table for this coding segment.

3155 **Output**:

- 3156Consider the input to be a string of zero or more characters $s_1s_2...s_N$, where each character s_1 is3157either a single character or a 3-character sequence matching the Escape production of the3158grammar (that is, a 3-character sequence consisting of a % character followed by two hexadecimal3159digits). Translate each character to a 6-bit string. For a single character, the corresponding 6-bit3160string is specified in Table G-1 (G). For an Escape sequence, the corresponding 6-bit string is3161specified in Table G-1 (G) by finding the escape sequence in the "URI Form" column. Concatenate3162those 6-bit strings in the order corresponding to the input, then append six zero bits (000000).
- The resulting bit string is of variable length, but is always at least 6 bits and is always a multiple of 6 bits.

3165 14.3.9 "6-Bit Variable String Partition Table" Encoding method

- The 6-Bit Variable String Partition Table encoding method is used for a segment that appears in the URI as a variable-length numeric field and a variable-length string field separated by a dot (".") character, and in the binary encoding as a 3-bit "partition" field followed by a variable length binary integer and a null-terminated binary-encoded character string. The number of characters in the two URI fields is always less than or equal to a known limit (counting a 3-character escape sequence as a single character), and the number of bits in the binary encoding is also less than or equal to a known limit.
- The 6-Bit Variable String Partition Table encoding method makes use of a "partition table." The specific partition table to use is specified in the coding table for a given EPC scheme.

3175 Input:

3176

3177

3178 3179

3182

3183

3184

3185

3186

3187

3188

3189 3190

3191

3192 3193

3195

3196

3197

3108

3199

3200

The input to the encoding method is the URI portion indicated in the "URI portion" row of the encoding table. This consists of two strings separated by a dot (".") character. For the purpose of this encoding procedure, the strings to the left and right of the dot are denoted *C* and *D*, respectively.

3180 Validity Test:

3181 The input must satisfy the following:

- The input must match the grammar for the corresponding portion of the URI as specified in the appropriate subsection of Section <u>6.3</u>.
 - The number of digits in C must match one of the values specified in the "GS1 Company Prefix Digits (L)" column of the partition table. The corresponding row is called the "matching partition table row" in the remainder of the encoding procedure.
 - The number of characters in D must be less than or equal to the corresponding value specified in the other field maximum characters column of the matching partition table row. For the purposes of this rule, an escape triplet (%nn) is counted as one character.
 - For each portion of *D* that matches the Escape production of the grammar specified in Section <u>5</u> (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the 39 allowed characters specified in <u>Table G-1</u> (G).

3194 **Output**:

Construct the output bit string by concatenating the following three components:

- The value P specified in the "partition value" column of the matching partition table row, as a 3bit binary integer.
 - The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the "GS1 Company Prefix bits" column of the matching partition table row.
- 3201 The value of D converted to an N-bit binary string, where N is less than or equal to the number 3202 of bits specified in the other field maximum bits column of the matching partition table row. This binary string is constructed as follows. Consider D to be a string of one or more characters 3203 3204 $s_1s_2...s_N$, where each character s_1 is either a single character or a 3-character sequence 3205 matching the Escape production of the grammar (that is, a 3-character sequence consisting of a 3206 % character followed by two hexadecimal digits). Translate each character to a 6-bit string. For a 3207 single character, the corresponding 6-bit string is specified in Table G-1 (G). For an Escape 3208 sequence, the 6-bit string is the value of the two hexadecimal characters considered as a 6-bit 3209 integer. Concatenate those 6-bit strings in the order corresponding to the input, then add six 3210 zero bits.
- 3211 The resulting bit string is (3 + M + N) bits in length, which is always less than or equal to the 3212 maximum "Coding Segment Bit Count" for this segment as indicated in the coding table.

3213 14.3.10"Fixed Width Integer" Encoding Method

The Fixed Width Integer encoding method is used for a segment that appears as a zero-padded decimal integer in the URI, and as a binary integer in the binary encoding.

3216 Input:

The input to the encoding method is the URI portion indicated in the "URI portion" row of the encoding table, an all-numeric character string with no dot (".") characters.

3219 Validity Test:

3220 The input character string must satisfy the following:

It must match the grammar for PaddedNumericComponent as specified in Section <u>5</u>.

3222 3223 3224		 The value of the string when considered as a non-negative decimal integer must be less than ((10^D) -1) where D=int(b*log(2)/log(10)), where b is the value specified in the "Coding Segment Bit Count" row of the encoding table. 				
3225		If any of the above tests fails, the encoding of the URI fails.				
3226		Output:				
3227 3228 3229		here <i>b</i> is th	g of this segment is a <i>b</i> -bit integer (padded to the left with zero bits as necessary), ne value specified in the "Coding Segment Bit Count" row of the encoding table, whose value of the input character string considered as a decimal integer.			
3230	14.4	Decoding	procedure			
3231 3232 3233 3234 3235 3236		Tag into ar ection <u>15.2</u> ank, includi ection <u>15.2</u>	The decodes a bit string as found beginning at bit 20_h in the EPC memory bank of a Gen in EPC Tag URI. This procedure only decodes the EPC and filter value (if applicable). 2.2 gives the complete procedure for decoding the entire contents of the EPC memory ing control information that is stored outside of the encoded EPC. The procedure in 2.2 should be used by most applications. (The procedure in Section <u>15.2.2</u> uses the elow as a subroutine.)			
3237		iven:				
3238		A bit stri	ng consisting of N bits b_{N-1} b_{N-2} b_0			
3239		ields:				
3240 3241			Fag URI beginning with urn:epc:tag:, which does not contain control information ther than the filter value if the EPC scheme includes a filter value); OR			
3242		An excep	otion indicating that the bit string cannot be decoded into an EPC Tag URI.			
3243		rocedure:				
3244 3245 3246 3247		Section	he most significant eight bits, the EPC header: $b_{N-1} b_{N-2} \dots b_{N-8}$. Referring to <u>Table 14-1</u> in <u>14.2</u> , use the header to identify the coding table for this binary encoding and the g bit length <i>B</i> . If no coding table exists for this header, stop: this binary encoding cannot ded.			
3248 3249			that the total number of bits N is greater than or equal to the total number of bits B l for this header in <u>Table 14-1</u> . If not, stop: this binary encoding cannot be decoded.			
3250 3251 3252 3253 3254		in <u>Table</u> of this pr	sary, truncate the least significant bits of the input to match the number of bits specified $14-1$ That is, if <u>Table 14-1</u> specifies <i>B</i> bits, retain bits $b_{N-1} \ b_{N-2} \dots b_{N-B}$. For the remainder rocedure, consider the remaining bits to be numbered $b_{B-1} \ b_{B-2} \dots b_0$. (The purpose of this premove any trailing zero padding bits that may have been read due to word-oriented hsfer.)			
3255 3256 3257		be omitte	riable-length coding scheme, there is no <i>B</i> specified in <u>Table 14-1</u> and so this step must ed. There may be trailing zero padding bits remaining after all segments are decoded in pelow; if so, ignore them.			
3258 3259 3260 3261 3262 3263 3264		coding ta a portion method" correspo cannot b	e the bits of the binary encoding into segments according to the "bit position" row of the able. For each segment, decode the bits to obtain a character string that will be used as n of the final URI. The method for decoding each column depends on the "coding row of the table. If the "coding method" row specifies a specific bit string, the inding bits of the input must match those bits exactly; if not, stop: this binary encoding e decoded. Otherwise, consult the following sections that specify the decoding methods. coding of any segment fails, stop: this binary encoding cannot be decoded.			
3265 3266 3267 3268 3269		following column (most sig	riable-length coding segment, the coding method is applied beginning with the bit g the bits consumed by the previous coding column. That is, if the previous coding (the column to the left of this one) consumed bits up to and including bit b_i , then the nificant bit for decoding this segment is bit b_{i-1} . The coding method will determine be ending bit for this segment is.			

3270 3271 3272		7. Concatenate the following strings to obtain the final URI: the string urn:epc:tag:, the scheme name as specified in the coding table, a colon (":") character, and the strings obtained in Step 4, inserting a dot (".") character between adjacent strings.				
3273		The following sections specify the procedures to be used in Step 4.				
3274	14.4.1	"Integer" Decoding method				
3275 3276		The Integer decoding method is used for a segment that appears as a decimal integer in the URI, and as a binary integer in the binary encoding.				
3277		Input:				
3278 3279		The input to the decoding method is the bit string identified in the "bit position" row of the coding table.				
3280		Validity Test:				
3281		There are no validity tests for this decoding method.				
3282		Output:				
3283 3284 3285		The decoding of this segment is a decimal numeral whose value is the value of the input considered as an unsigned binary integer. The output shall not begin with a zero character if it is two or more digits in length.				
3286	14.4.2	"String" Decoding method				
3287 3288		The String decoding method is used for a segment that appears as an alphanumeric string in the URI, and as an ISO 646 (ASCII) encoded bit string in the binary encoding.				
3289		Input:				
3290 3291		The input to the decoding method is the bit string identified in the "bit position" row of the coding table. This length of this bit string is always a multiple of seven.				
3292		Validity Test:				
3293		The input bit string must satisfy the following:				
3294 3295		 Each 7-bit segment must have a value corresponding to a character specified in <u>Table A-1</u>, or be all zeros. 				
3296		 All 7-bit segments following an all-zero segment must also be all zeros. 				
3297 3298		 The first 7-bit segment must not be all zeros. (In other words, the string must contain at least one character.) 				
3299		If any of the above tests fails, the decoding of the segment fails.				
3300		Output:				
3301 3302 3303 3304 3305		Translate each 7-bit segment, up to but not including the first all-zero segment (if any), into a single character or 3-charcter escape triplet by looking up the 7-bit segment in <u>Table A-1</u> , and using the value found in the "URI Form" column. Concatenate the characters and/or 3-character triplets in the order corresponding to the input bit string. The resulting character string is the output. This character string matches the GS3A3 production of the grammar in Section <u>5</u> .				
3306	14.4.3	"Partition Table" Decoding method				

3307The Partition Table decoding method is used for a segment that appears in the URI as a pair of3308variable-length numeric fields separated by a dot (".") character, and in the binary encoding as a 3-3309bit "partition" field followed by two variable length binary integers. The number of characters in the3310two URI fields always totals to a constant number of characters, and the number of bits in the3311binary encoding likewise totals to a constant number of bits.

The Partition Table decoding method makes use of a "partition table." The specific partition table to use is specified in the coding table for a given EPC scheme.

3314 Input:

3320

3321 3322

3323

3324

3325

3326

3327 3328

3329

3330

3331 3332

3333

3335

3336

3337

3338

3315The input to the decoding method is the bit string identified in the "bit position" row of the coding3316table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value,3317followed by two substrings of variable length.

3318 Validity Test:

- 3319 The input must satisfy the following:
 - The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the "partition value" column of the partition table. The corresponding row is called the "matching partition table row" in the remainder of the decoding procedure.
 - Extract the *M* next most significant bits of the input bit string following the three partition bits, where *M* is the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider these *M* bits to be an unsigned binary integer, *C*. The value of *C* must be less than 10^L, where *L* is the value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row.
 - There are *N* bits remaining in the input bit string, where *N* is the value specified in the other field bits column of the matching partition table row. Consider these *N* bits to be an unsigned binary integer, *D*. The value of *D* must be less than 10^{K} , where *K* is the value specified in the other field digits (K) column of the matching partition table row. Note that if K = 0, then the value of *D* must be zero.

3334 **Output**:

- Construct the output character string by concatenating the following three components:
- The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L digits in total.
- A dot (".") character.
- 3339The value D converted to a decimal numeral, padding on the left with zero ("0") characters to
make K digits in total. If K = 0, append no characters to the dot above (in this case, the final
URI string will have two adjacent dot characters when this segment is combined with the
following segment).

3343 14.4.4 "Unpadded Partition Table" Decoding method

- The Unpadded Partition Table decoding method is used for a segment that appears in the URI as a pair of variable-length numeric fields separated by a dot (".") character, and in the binary encoding as a 3-bit "partition" field followed by two variable length binary integers. The number of characters in the two URI fields is always less than or equal to a known limit, and the number of bits in the binary encoding is always a constant number of bits.
- The Unpadded Partition Table decoding method makes use of a "partition table." The specific partition table to use is specified in the coding table for a given EPC scheme.

3351 Input:

3352The input to the decoding method is the bit string identified in the "bit position" row of the coding3353table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value,3354followed by two substrings of variable length.

3355 Validity Test:

The input must satisfy the following:

3357 3358 3359	•	The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the "partition value" column of the partition table. The corresponding row is called the "matching partition table row" in the remainder of the decoding procedure.					
3360 3361 3362 3363 3364	•	Extract the <i>M</i> next most significant bits of the input bit string following the three partition bits, where <i>M</i> is the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider these <i>M</i> bits to be an unsigned binary integer, <i>C</i> . The value of <i>C</i> must be less than 10^{L} , where <i>L</i> is the value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row.					
3365 3366 3367	1	There are <i>N</i> bits remaining in the input bit string, where <i>N</i> is the value specified in the other field bits column of the matching partition table row. Consider these <i>N</i> bits to be an unsigned binary integer, <i>D</i> .					
3368	Οι	itput:					
3369	Со	nstruct the output character string by concatenating the following three components:					
3370 3371	•	The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L digits in total.					
3372	•	A dot (".") character.					
		The value D converted to a decimal numeral, with no leading zeros (except that if $D = 0$ it is					
3373 3374		converted to a single zero digit).					

3375 14.4.5 "String Partition Table" Decoding method

- The String Partition Table decoding method is used for a segment that appears in the URI as a variable-length numeric field and a variable-length string field separated by a dot (".") character, and in the binary encoding as a 3-bit "partition" field followed by a variable length binary integer and a variable length binary-encoded character string. The number of characters in the two URI fields is always less than or equal to a known limit (counting a 3-character escape sequence as a single character), and the number of bits in the binary encoding is padded if necessary to a constant number of bits.
- 3383The Partition Table decoding method makes use of a "partition table." The specific partition table to
use is specified in the coding table for a given EPC scheme.

3385 Input:

3395

3396 3397

3398

3399

3400

3401

3402

3386The input to the decoding method is the bit string identified in the "bit position" row of the coding3387table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value,3388followed by two substrings of variable length.

3389 Validity Test:

- 3390 The input must satisfy the following:
- 3391The three most significant bits of the input bit string, considered as a binary integer, must3392match one of the values specified in the "partition value" column of the partition table. The3393corresponding row is called the "matching partition table row" in the remainder of the decoding3394procedure.
 - Extract the *M* next most significant bits of the input bit string following the three partition bits, where *M* is the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider these *M* bits to be an unsigned binary integer, *C*. The value of *C* must be less than 10^L, where *L* is the value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row.
 - There are N bits remaining in the input bit string, where N is the value specified in the other field bits column of the matching partition table row. These bits must consist of one or more non-zero 7-bit segments followed by zero or more all-zero bits.
- 3403The number of non-zero 7-bit segments that precede the all-zero bits (if any) must be less or
equal to than *K*, where *K* is the value specified in the "Maximum Characters" column of the
matching partition table row.

3406 3407		Each of the non-zero 7-bit segments must have a value corresponding to a character specified in <u>Table A-1</u> .			
3408		Output:			
3409		Construct the output character string by concatenating the following three components:			
3410 3411		The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L digits in total.			
3412		A dot (".") character.			
3413 3414 3415 3416		A character string determined as follows. Translate each non-zero 7-bit segment as determined by the validity test into a single character or 3-character escape triplet by looking up the 7-bit segment in <u>Table A-1</u> , and using the value found in the "URI Form" column. Concatenate the characters and/or 3-character triplet in the order corresponding to the input bit string.			
3417	14.4.6	"Numeric String" Decoding method			
3418 3419 3420		The Numeric String decoding method is used for a segment that appears as a numeric string in the URI, possibly including leading zeros. The leading zeros are preserved in the binary encoding by prepending a "1" digit to the numeric string before encoding.			
3421		Input:			
3422 3423		The input to the decoding method is the bit string identified in the "bit position" row of the coding table.			
3424		Validity Test:			
3425		The input must be such that the decoding procedure below does not fail.			
3426		Output:			
3427		Construct the output string as follows.			
3428 3429		 Convert the input bit string to a decimal numeral without leading zeros whose value is the value of the input considered as an unsigned binary integer. 			
3430 3431		 If the numeral from the previous step does not begin with a "1" character, stop: the input is invalid. 			
3432 3433		 If the numeral from the previous step consists only of one character, stop: the input is invalid (because this would correspond to an empty numeric string). 			
3434		 Delete the leading "1" character from the numeral. 			
3435		 The resulting string is the output. 			
3436	14.4.7	"6-Bit CAGE/DoDAAC" Decoding method			
3437 3438 3439		The 6-Bit CAGE/DoDAAC decoding method is used for a segment that appears as a 5-character CAGE code or 6-character DoDAAC code in the URI, and as a 36-bit encoded bit string in the binary encoding.			
3440		Input:			
3441 3442		The input to the decoding method is the bit string identified in the "bit position" row of the coding table. This length of this bit string is always 36 bits.			
3443		Validity Test:			
3444		The input bit string must satisfy the following:			
3445 3446 3447		When the bit string is considered as consisting of six 6-bit segments, each 6-bit segment must have a value corresponding to a character specified in <u>Table G-1</u> (G) except that the first 6-bit segment may also be the value 100000.			

- The first 6-bit segment must be the value 100000, or correspond to a digit character, or an uppercase alphabetic character excluding the letters I and 0.
- 3450The remaining five 6-bit segments must correspond to a digit character or an uppercase3451alphabetic character excluding the letters I and O.
- 3452 If any of the above tests fails, the decoding of the segment fails.

3453 **Output**:

3448 3449

3454Disregard the first 6-bit segment if it is equal to 100000. Translate each of the remaining five or six34556-bit segments into a single character by looking up the 6-bit segment in <u>Table G-1</u> (G) and using3456the value found in the "URI Form" column. Concatenate the characters in the order corresponding to3457the input bit string. The resulting character string is the output. This character string matches the3458CAGECodeOrDODAAC production of the grammar in Section <u>6.3.14</u>.

3459 14.4.8 "6-Bit Variable String" Decoding method

3460The 6-Bit Variable String decoding method is used for a segment that appears in the URI as a3461variable-length string field, and in the binary encoding as a variable-length null-terminated binary-3462encoded character string.

3463 Input:

3464The input to the decoding method is the bit string that begins in the next least significant bit3465position following the previous coding segment. Only a portion of this bit string is consumed by this3466decoding method, as described below.

3467 Validity Test:

3468 The input must be such that the decoding procedure below does not fail.

3469 **Output**:

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

- 3470 Construct the output string as follows.
 - Beginning with the most significant bit of the input, divide the input into adjacent 6-bit segments, until a terminating segment consisting of all zero bits (000000) is found. If the input is exhausted before an all-zero segment is found, stop: the input is invalid.
 - The number of 6-bit segments preceding the terminating segment must be greater than or equal to the minimum number of characters and less than or equal to the maximum number of characters specified in the footnote to the coding table for this coding table column. If not, stop: the input is invalid.
 - For each 6-bit segment preceding the terminating segment, consult <u>Table G-1</u> (G) to find the character corresponding to the value of the 6-bit segment. If there is no character in the table corresponding to the 6-bit segment, stop: the input is invalid.
- If the input violates any other constraint indicated in the coding table, stop: the input is invalid.
- 3482Translate each 6-bit segment preceding the terminating segment into a single character or 3-
character escape triplet by looking up the 6-bit segment in <u>Table G-1</u> (G) and using the value
found in the "URI Form" column. Concatenate the characters and/or 3-character triplets in the
order corresponding to the input bit string. The resulting string is the output of the decoding
procedure.
- If any columns remain in the coding table, the decoding procedure for the next column resumes
 with the next least significant bit after the terminating 000000 segment.

3489 14.4.9 "6-Bit Variable String Partition Table" Decoding method

3490The 6-Bit Variable String Partition Table decoding method is used for a segment that appears in the
URI as a variable-length numeric field and a variable-length string field separated by a dot (".")3492character, and in the binary encoding as a 3-bit "partition" field followed by a variable length binary
integer and a null-terminated binary-encoded character string. The number of characters in the two

3495 3496	a single character), and the number of bits in the binary encoding is also less than or equal to a known limit.			
3497 3498	The 6-Bit Variable String Partition Table decoding method makes use of a "partition table." The specific partition table to use is specified in the coding table for a given EPC scheme.			
3499	Input:			
3500 3501 3502	The input to the decoding method is the bit string identified in the "bit position" row of the coding table. Logically, this bit string is divided into three substrings, consisting of a 3-bit "partition" value, followed by two substrings of variable length.			
3503	Validity Test:			
3504	The input must satisfy the following:			
3505 3506 3507 3508	The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the "partition value" column of the partition table. The corresponding row is called the "matching partition table row" in the remainder of the decoding procedure.			
3509 3510 3511 3512 3513	Extract the <i>M</i> next most significant bits of the input bit string following the three partition bits, where <i>M</i> is the value specified in the "Company Prefix Bits" column of the matching partition table row. Consider these <i>M</i> bits to be an unsigned binary integer, <i>C</i> . The value of <i>C</i> must be less than 10 ^L , where <i>L</i> is the value specified in the "GS1 Company Prefix Digits (L)" column of the matching partition table row.			
3514 3515 3516 3517	There are up to N bits remaining in the input bit string, where N is the value specified in the other field maximum bits column of the matching partition table row. These bits must begin with one or more non-zero 6-bit segments followed by six all-zero bits. Any additional bits after the six all-zero bits belong to the next coding segment in the coding table.			

URI fields is always less than or equal to a known limit (counting a 3-character escape sequence as

- The number of non-zero 6-bit segments that precede the all-zero bits must be less or equal to than K, where K is the value specified in the "Maximum Characters" column of the matching partition table row.
- Each of the non-zero 6-bit segments must have a value corresponding to a character specified in <u>Table G-1</u> (G)

3523 **Output**:

3518

3519

3520

3521

3522

3524

3525

3526 3527 Construct the output character string by concatenating the following three components:

- The value C converted to a decimal numeral, padding on the left with zero ("0") characters to make L digits in total.
- A dot (".") character.
- A character string determined as follows. Translate each non-zero 6-bit segment as determined by the validity test into a single character or 3-character escape triplet by looking up the 6-bit segment in <u>Table G-1</u> (G) and using the value found in the "URI Form" column. Concatenate the characters and/or 3-character triplet in the order corresponding to the input bit string.

3532 14.4.10"Fixed Width Integer" Decoding method

3533The Integer decoding method is used for a segment that appears as a zero-padded decimal integer3534in the URI, and as a binary integer in the binary encoding.

3535 Input:

3536The input to the decoding method is the bit string identified in the "bit position" row of the coding
table.3537table.

3538 Validity Test:

3539 3540	Given a sequence of bits of length b, calculate i _{max} as follows:
3541	D = int(b*log(2)/log(10))
3542	$i_{max} = 10^{D} - 1$
3543	Interpret the sequence of bits of length b as a non-negative integer value, i

3544 If $i > i_{max}$ then decoding fails because the bits correspond to a value that cannot be expressed in D digits.

3546

3547 **Output**:

The decoding of this segment is a decimal numeral whose value is the value of the input considered as an unsigned binary integer. The output is padded to the left, so that the total number of digits D is given by D=int(b*log(2)/log(10)).

3551

3552 14.5 EPC Binary coding tables

- This section specifies coding tables for use with the encoding procedure of Section $\underline{14.3}$ and the decoding procedure of Section $\underline{14.3.4}$.
- The "Bit Position" row of each coding table illustrates the relative bit positions of segments within each binary encoding. In the "Bit Position" row, the highest subscript indicates the most significant bit, and subscript 0 indicates the least significant bit. Note that this is opposite to the way RFID tag memory bank bit addresses are normally indicated, where address 0 is the most significant bit.

3559 14.5.1 Serialised Global Trade Item Number (SGTIN)

- 3560Two coding schemes for the SGTIN are specified, a 96-bit encoding (SGTIN-96) and a 198-bit3561encoding (SGTIN-198). The SGTIN-198 encoding allows for the full range of serial numbers up to 203562alphanumeric characters as specified in [GS1GS]. The SGTIN-96 encoding allows for numeric-only3563serial numbers, without leading zeros, whose value is less than 2³⁸ (that is, from 0 through3564274,877,906,943, inclusive).
- Both SGTIN coding schemes make reference to the following partition table.

3566 Table 14-2 SGTIN Partition Table

Partition Value (P)	GS1 Company Prefix		Indicator/Pad Digit and Item Reference		
	Bits (<i>M</i>)	Digits (L)	Bits (N)	Digits	
0	40	12	4	1	
1	37	11	7	2	
2	34	10	10	3	
3	30	9	14	4	
4	27	8	17	5	
5	24	7	20	6	
6	20	6	24	7	

3567 14.5.1.1 SGTI N-96 coding table

3568

Table 14-3 SGTIN-96 coding table

Scheme	SGTIN-96
URI Template	urn:epc:tag:sgtin-96:F.C.I.S

Scheme	SGTIN-96						
Total Bits	96	96					
Logical Segment	EPC Header	Filter	Partition	Serial			
Logical Segment Bit Count	8	3	3 20-40 24-4			38	
Coding Segment	EPC Header	Filter	GTIN			Serial	
URI portion		F	C.I			S	
Coding Segment Bit Count	8	3	47			38	
Bit Position	b95b94b88	b87b86b85	b ₈₄ b ₈₃ b ₃₈			<i>b</i> ₃₇ <i>b</i> ₃₆ <i>b</i> ₀	
Coding Method	00110000	Integer	Partition <u>Table</u>	Integer			

(*) See Section <u>7.1.2</u> for the case of an SGTIN derived from a GTIN-8.

3570(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad digit takes3571the place of the Indicator Digit. In all cases, see Section 7.1 for the definition of how the Indicator3572Digit (or zero pad) and the Item Reference are combined into this segment of the EPC.

3573 14.5.1.2 SGTI N-198 coding table

3574 **Table 14-4** SGTIN-198 coding table

Scheme	SGTIN-198						
URI Template	urn:epc:tag:sgtin-198:F.C.I.S						
Total Bits	198						
Logical Segment	EPC Header	Filter	Partition	Serial			
Logical Segment Bit Count	8	3	3	20-40	24-4	140	
Coding Segment	EPC Header	Filter	GTIN	Serial			
URI portion		F	C.I			S	
Coding Segment Bit Count	8	3	47			140	
Bit Position	b197b196b190	b189b188b187	b186b185b140			b139b138b0	
Coding Method	00110110	Integer	Partition <u>Table 14-2</u>			String	

3575 3576

3577 3578 (*) See Section $\underline{7.1.2}$ for the case of an SGTIN derived from a GTIN-8.

(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad digit takes the place of the Indicator Digit. In all cases, see Section <u>7.1</u> for the definition of how the Indicator Digit (or zero pad) and the Item Reference are combined into this segment of the EPC.

3579 14.5.2 Serial Shipping Container Code (SSCC)

- 3580 One coding scheme for the SSCC is specified: the 96-bit encoding SSCC-96. The SSCC-96 encoding 3581 allows for the full range of SSCCs as specified in [GS1GS1].
 - The SSCC-96 coding scheme makes reference to the following partition table.

3583 **Table 14-5** SSCC Partition Table

Partition Value (<i>P</i>)	GS1 Company Prefix		Extension Digit and Serial Reference		
	Bits (<i>M</i>)	Digits (<i>L</i>)	Bits (<i>N</i>)	Digits	
0	40	12	18	5	
1	37	11	21	6	
2	34	10	24	7	
3	30	9	28	8	
4	27	8	31	9	
5	24	7	34	10	
6	20	6	38	11	

3584 14.5.2.1 SSCC-96 coding table

3585 Table 14-6 SSCC-96 coding table

Scheme	SSCC-96						
URI Template	urn:epc:tag:sscc-96:F.C.S						
Total Bits	96						
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Extension / Serial Reference	(Reserved)	
Logical Segment Bit Count	8	3	3	20-40	38-18	24	
Coding Segment	EPC Header	Filter	SSCC			(Reserved)	
URI portion		F	C.S				
Coding Segment Bit Count	8	3	61			24	
Bit Position	b ₉₅ b ₉₄ b ₈₈	b ₈₇ b ₈₆ b ₈₅	b ₈₄ b ₈₃ b ₂₄			$b_{23}b_{36}b_0$	
Coding Method	00110001	Integer	Partition <u>Table 14-5</u>			000 (24 zero bits)	

3586 **14.5.3 Global Location Number with or without Extension (SGLN)**

- 3587Two coding schemes for the SGLN are specified, a 96-bit encoding (SGLN-96) and a 195-bit3588encoding (SGLN-195). The SGLN-195 encoding allows for the full range of GLN extensions up to 203589alphanumeric characters as specified in [GS1GS]. The SGLN-96 encoding allows for numeric-only3590GLN extensions, without leading zeros, whose value is less than 2⁴¹ (that is, from 0 through35912,199,023,255,551, inclusive). Note that an extension value of 0 is reserved to indicate that the3592SGLN is equivalent to the GLN indicated by the GS1 Company Prefix and location reference; this3593value is available in both the SGLN-96 and the SGLN-195 encodings.
- Both SGLN coding schemes make reference to the following partition table.

3595 Table 14-7 SGLN Partition Table

Partition Value (<i>P</i>)	GS1 Company Prefix		Location Reference		
	Bits (<i>M</i>)	Digits (L)	Bits (<i>N</i>)	Digits	
0	40	12	1	0	
1	37	11	4	1	
2	34	10	7	2	
3	30	9	11	3	
4	27	8	14	4	
5	24	7	17	5	
6	20	6	21	6	

3596 14.5.3.1 SGLN-96 coding table

Table 14-8 SGLN-96 coding table

Scheme	SGLN-96						
URI Template	urn:epc:tag:sgln-96:F.C.L.E						
Total Bits	96						
Logical Segment	EPC Header	Filter	Partition	Extension			
Logical Segment Bit Count	8	3	3	20-40	21-1	41	
Coding Segment	EPC Header	Filter	GLN	Extension			
URI portion		F	C.L	E			
Coding Segment Bit Count	8	3	44			41	
Bit Position	b ₉₅ b ₉₄ b ₈₈	b ₈₇ b ₈₆ b ₈₅	b ₈₄ b ₈₃ b ₄₁	$b_{40}b_{39}b_0$			
Coding Method	00110010	Integer	Partition <u>Table</u>	Integer			

3598 14.5.3.2 SGLN-195 coding table

3599

3597

Table 14-9 SGLN-195 coding table

Scheme	SGLN-195						
URI Template	urn:epc:tag:sgln-195:F.C.L.E						
Total Bits	195						
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Location Reference	Extension	
Logical Segment Bit Count	8	3	3	20-40	21-1	140	
Coding Segment	EPC Header	Filter	GLN	Extension			

Scheme	SGLN-195				
URI portion		F	<i>C</i> . <i>L</i>	E	
Coding Segment Bit Count	8	3	44	140	
Bit Position	b194b193b187	b ₁₈₆ b ₁₈₅ b ₁₈₄	<i>b</i> ₁₈₃ <i>b</i> ₁₈₂ <i>b</i> ₁₄₀	b ₁₃₉ b ₁₃₈ b ₀	
Coding Method	00111001	Integer	Partition <u>Table 14-7</u>	String	

3600 14.5.4 Global Returnable Asset Identifier (GRAI)

- 3601Two coding schemes for the GRAI are specified, a 96-bit encoding (GRAI-96) and a 170-bit encoding3602(GRAI-170). The GRAI-170 encoding allows for the full range of serial numbers up to 163603alphanumeric characters as specified in [GS1GS]. The GRAI-96 encoding allows for numeric-only3604serial numbers, without leading zeros, whose value is less than 2³⁸ (that is, from 0 through3605274,877,906,943, inclusive).
- 3606 Only GRAIs that include the optional serial number may be represented as EPCs. A GRAI without a 3607 serial number represents an asset class, rather than a specific instance, and therefore may not be 3608 used as an EPC (just as a non-serialised GTIN may not be used as an EPC).
- Both GRAI coding schemes make reference to the following partition table.

3610 Table 14-10 GRAI Partition Table

Partition Value (<i>P</i>)	Company Prefix		Asset Type		
	Bits (<i>M</i>)	Digits (L)	Bits (N)	Digits	
0	40	12	4	0	
1	37	11	7	1	
2	34	10	10	2	
3	30	9	14	3	
4	27	8	17	4	
5	24	7	20	5	
6	20	6	24	6	

3611 14.5.4.1 GRAI - 96 coding table

3612 **Table 14-11** GRAI-96 coding table

Scheme	GRAI-96	GRAI-96					
URI Template	urn:epc:tag	urn:epc:tag:grai-96:F.C.A.S					
Total Bits	96						
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Asset Type	Serial	
Logical Segment Bit Count	8	3	3	20-40	24-4	38	
Coding Segment	EPC Header	Filter	Partition + Company Prefix + Asset Type Serial			Serial	
URI portion		F	C.A			S	

Scheme	GRAI-96			
Coding Segment Bit Count	8	3	47	38
Bit Position	b95b94b88	b87b86b85	b ₈₄ b ₈₃ b ₃₈	b37b36b0
Coding Method	00110011	Integer	Partition <u>Table 14-10</u>	Integer

3613 14.5.4.2 GRAI - 170 coding table

3614

Table 14-12 GRAI-170 coding table							
Scheme	GRAI-170	GRAI-170					
URI Template	urn:epc:tag:g	rai-170: <i>F.C.</i>	A.S				
Total Bits	170						
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Asset Type	Serial	
Logical Segment Bit Count	8	3	3	20-40	24-4	112	
Coding Segment	EPC Header	Filter	Partition + Company Prefix + Asset Type			Serial	
URI portion		F	<i>C</i> .A			S	
Coding Segment Bit Count	8	3	47			112	
Bit Position	b169b168b162	b161b160b159	<i>b</i> ₁₅₈ <i>b</i> ₁₅₇ <i>b</i> ₁₁₂			<i>b</i> ₁₁₁ <i>b</i> ₁₁₀ <i>b</i> ₀	
Coding Method	00110111	Integer	Partition <u>Tab</u>	<u>le 14-10</u>		String	

3615 14.5.5 Global Individual Asset Identifier (GIAI)

3616Two coding schemes for the GIAI are specified, a 96-bit encoding (GIAI-96) and a 202-bit encoding3617(GIAI-202). The GIAI-202 encoding allows for the full range of serial numbers up to 243618alphanumeric characters as specified in [GS1GS]. The GIAI-96 encoding allows for numeric-only3619serial numbers, without leading zeros, whose value is, up to a limit that varies with the length of the3620GS1 Company Prefix.

3621 Each GIAI coding schemes make reference to a different partition table, specified alongside the 3622 corresponding coding table in the subsections below.

3623 14.5.5.1 GI AI -96 Partition Table and coding table

3624

The GIAI-96 coding scheme makes use of the following partition table.

3625 **Table 14-13** GIAI-96 Partition Table

Partition Value (<i>P</i>)	Company Prefix		Individual Asset Reference		
	Bits (<i>M</i>)	Digits (L)	Bits (<i>N</i>)	Max Digits (K)	
0	40	12	42	13	
1	37	11	45	14	

Partition Value (<i>P</i>)	Company Prefix		Individual Asset Reference	
2	34	10	48	15
3	30	9	52	16
4	27	8	55	17
5	24	7	58	18
6	20	6	62	19

Table 14-14 GIAI-96 coding table

Scheme	GIAI-96					
URI Template	urn:epc:tag:	urn:epc:tag:giai-96:F.C.A				
Total Bits	96	96				
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Individual Asset Reference	
Logical Segment Bit Count	8	3	3	20-40	62–42	
Coding Segment	EPC Header	Filter	GIAI			
URI portion		F	C.A			
Coding Segment Bit Count	8	3	85			
Bit Position	b ₉₅ b ₉₄ b ₈₈	b ₈₇ b ₈₆ b ₈₅	b ₈₄ b ₈₃ b ₀			
Coding Method	00110100	Integer	Unpadded Parti	ition <u><i>Table 14-13</i></u>	Table 14-14	

3627 14.5.5.2 GIAI-202 Partition Table and coding table

3628

The GIAI-202 coding scheme makes use of the following partition table.

3629 Table 14-15 GIAI-202 Partition Table

Partition Value (<i>P</i>)	Company Prefix	Company Prefix		Individual Asset Reference		
	Bits (<i>M</i>)	Digits (L)	Bits (N)	Maximum Characters		
0	40	12	148	18		
1	37	11	151	19		
2	34	10	154	20		
3	30	9	158	21		
4	27	8	161	22		
5	24	7	164	23		
6	20	6	168	24		

3630

Table 14-16 GIAI-202 coding table

Scheme	GIAI-202
URI Template	urn:epc:tag:giai-202:F.C.A
Total Bits	202

Scheme	GIAI-202				
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Individual Asset Reference
Logical Segment Bit Count	8	3	3	20-40	168–148
Coding Segment	EPC Header	Filter	GIAI		
URI portion		F	<i>C</i> .A		
Coding Segment Bit Count	8	3	191		
Bit Position	b ₂₀₁ b ₂₀₀ b ₁₉₄	b193b192b191	<i>b</i> ₁₉₀ <i>b</i> ₁₈₉ <i>b</i> ₀		
Coding Method	00111000	Integer	String Partition Table 14-15		

3631 14.5.6 Global Service Relation Number (GSRN)

- 3632Two encoding schemes for the GSRN are specified: the 96-bit encoding GSRN- -96, and the 96-bit3633encoding GSRNP-96. Both GSRN-96 encodings allow for the full range of GSRN codes as specified in3634[GS1GS].
 - Both GSRN-96 coding schemes make reference to the following partition table.

3636 Table 14-17 GSRN Partition Table

Partition Value (<i>P</i>)	Company Prefix		Service Reference	
	Bits (<i>M</i>)	Digits (L)	Bits (<i>N</i>)	Digits
0	40	12	18	5
1	37	11	21	6
2	34	10	24	7
3	30	9	28	8
4	27	8	31	9
5	24	7	34	10
6	20	6	38	11

3637 14.5.6.1 GSRN- 96 coding table

```
3638
```

3635

Table 14-18 GSRN-96 coding table

Scheme	GSRN-96	GSRN-96						
URI Template	urn:epc:tag	urn:epc:tag:gsrn-96:F.C.S						
Total Bits	96							
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Service Reference	(Reserved)		
Logical Segment Bit Count	8	3	3	20-40	38-18	24		
Coding Segment	EPC Header	Filter	GSRN			(Reserved)		

(Reserved)

(Reserved)

 $b_{23}b_{22}...b_0$

(24 zero bits)

00...0

24

24

Service

38-18

Reference

Scheme	GSRN-96	GSRN-96						
URI portion		F	<i>C.S</i>					
Coding Segment Bit Count	8	3	61	24				
Bit Position	b ₉₅ b ₉₄ b ₈₈	b ₈₇ b ₈₆ b ₈₅	b ₈₄ b ₈₃ b ₂₄	$b_{23}b_{22}b_0$				
Coding Method	00101101	Integer	Partition <u>Table 14-17</u>	000 (24 zero bits)				

3639 **14.5.6.2 GSRNP-96 coding table**

EPC Header

b95b94...b88

00101110

8

Segment Bit Count Coding

Segment URI portion

Coding

Codina

Method

Segment Bit Count Bit Position

3640

Table 14-19 GSRNP-96 coding table								
Scheme	GSRNP-96	GSRNP-96						
URI Template	urn:epc:tag	arn:epc:tag:gsrnp-96:F.C.S						
Total Bits	96							
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix				
Logical	8	3	3	20-40				

Filter

F

3

 $b_{87}b_{86}b_{85}$

Integer

3641 **14.5.7 Global Document Type Identifier (GDTI)**

Three coding schemes for the GDTI specified, a 96-bit encoding (GDTI-96), a 113-bit encoding (GDTI-113, DEPRECATED as of TDS 1.9), and a 174-bit encoding (GDTI-174). The GDTI-174 encoding allows for the full range of document serialisation up to 17 alphanumeric characters, as specified in [GS1GS]. The deprecated GDTI-113 encoding allows for a reduced range of document serial numbers up to 17 numeric characters (including leading zeros) as originally specified in [GS1GS11.0]. The GDTI-96 encoding allows for document serial numbers without leading zeros whose value is less than 2⁴¹ (that is, from 0 through 2,199,023,255,551, inclusive).

GSRN

C.S

61

 $b_{84}b_{83}...b_{24}$

Partition Table 14-17

- 3649Only GDTIs that include the optional serial number may be represented as EPCs. A GDTI without a3650serial number represents a document class, rather than a specific document, and therefore may not3651be used as an EPC (just as a non-serialised GTIN may not be used as an EPC).
- Both GDTI coding schemes make reference to the following partition table.

3653 Table 14-20 GDTI Partition Table

Partition Value (<i>P</i>)	Company Prefix		Document Type	
	Bits (<i>M</i>)	Digits (L)	Bits (<i>N</i>)	Digits
0	40	12	1	0

Partition Value (<i>P</i>)	Company Prefix		Document Type	
1	37	11	4	1
2	34	10	7	2
3	30	9	11	3
4	27	8	14	4
5	24	7	17	5
6	20	6	21	6

3654 14.5.7.1 GDTI -96 coding table

3655

Table 14-21 GDTI-96 coding table

Scheme	GDTI-96	GDTI-96						
URI Template	urn:epc:tag	urn:epc:tag:gdti-96:F.C.D.S						
Total Bits	96							
Logical Segment	EPC Header	Filter	Partition	Partition GS1 Document Company Prefix Document				
Logical Segment Bit Count	8	3	3	20-40	21-1	41		
Coding Segment	EPC Header	Filter	Partition + Cor Type	Partition + Company Prefix + Document Type				
URI portion		F	C.D			S		
Coding Segment Bit Count	8	3	44			41		
Bit Position	b95b94b88	b ₈₇ b ₈₆ b ₈₅	b ₈₄ b ₈₃ b ₄₁	<i>b</i> ₄₀ <i>b</i> ₃₉ <i>b</i> ₀				
Coding Method	00101100	Integer	Partition <u>Table</u>	<u>14-20</u>		Integer		

3656 14.5.7.2 GDTI - 113 coding table

3657

Table 14-22 GDTI-113 coding table

Scheme	GDTI-113 Coding	GDTI-113							
URI Template	urn:epc:tag:go	arn:epc:tag:gdti-113:F.C.D.S							
Total Bits	113								
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Document Type	Serial			
Logical Segment Bit Count	8	3	3	20-40	21-1	58			
Coding Segment	EPC Header	Filter	Partition + Company Prefix + Document Type			Serial			
URI portion		F	C.D S			S			

Scheme	GDTI-113	DTI-113					
Coding Segment Bit Count	8	3	44	58			
Bit Position	<i>b</i> ₁₁₂ <i>b</i> ₁₁₁ <i>b</i> ₁₀₅	b104b103b102	<i>b</i> ₁₀₁ <i>b</i> ₁₀₀ <i>b</i> ₅₈	<i>b</i> ₅₇ <i>b</i> ₅₆ <i>b</i> ₀			
Coding Method	00111010	Integer	Partition <u>Table 14-20</u>	Numeric String			

3658 14.5.7.3 GDTI-174 coding table

3659

Table 14-23 GDTI-174 coding table

Table 14-23	23 GD11-174 coding table								
Scheme	GDTI-174	GDTI-174							
URI Template	urn:epc:tag:go	urn:epc:tag:gdti-174:F.C.A.S							
Total Bits	174								
Logical Segment	EPC Header	Filter	Partition	Serial					
Logical Segment Bit Count	8	3	3	20-40	21-1	119			
Coding Segment	EPC Header	Filter	Partition + Company Prefix + Asset Type			Serial			
URI portion		F	C.A			S			
Coding Segment Bit Count	8	3	44			119			
Bit Position	b173b172b166	b165b164b163	B ₁₆₂ b ₁₆₁ b ₁₁₉ B ₁₁₈ b ₁₁₇ b ₀						
Coding Method	00111110	Integer	Partition <u>Ta</u>	<u>ble 14-20</u>		String			

14.5.8 CPI Identifier (CPI) 3660

3661 3662

3663

Two coding schemes for the CPI identifier are specified: the 96-bit scheme CPI-96 and the variablelength encoding CPI-var. CPI-96 makes use of Partition Table 39 and CPI-var makes use of Partition Table 40.

Table 14-24 CPI-96 Partition Table 3664

Partition Value (<i>P</i>)	GS1 Company Prefix		Componen	Component/Part Reference		
	Bits (<i>M</i>)	Digits (L)	Bits (N)	Maximum Digits		
0	40	12	11	3		
1	37	11	14	4		
2	34	10	17	5		
3	30	9	21	6		
4	27	8	24	7		
5	24	7	27	8		
6	20	6	31	9		

3665 **Table 14-25** CPI-var Partition Table

Partition Value (<i>P</i>)	GS1 Company Prefix		Component/Part Reference		
	Bits (<i>M</i>)	Digits (L)	Maximum Bits ** (N)	Maximum Characters	
0	40	12	114	18	
1	37	11	120	19	
2	34	10	126	20	
3	30	9	132	21	
4	27	8	138	22	
5	24	7	144	23	
6	20	6	150	24	

3666 3667 ** The number of bits depends on the number of characters in the Component/Part Reference; see Sections <u>14.3.9</u> and <u>14.4.9</u>.

3668 14.5.8.1 CPI-96 coding table

Table 14-26 CPI-96 coding table 3669 Scheme CPI-96 URI urn:epc:tag:cpi-96:F.C.P.S Template **Total Bits** 96 **EPC Header** Filter Partition Logical GS1 Component/ Serial Segment Company Part Reference Prefix Logical 8 3 3 20-40 31-11 31 Segment Bit Count Coding **EPC Header** Filter Component/Part Identifier Component/Pa Segment rt Serial Number FC.PS URI portion 3 Coding 8 54 31 Segment **Bit Count** Bit $b_{84}b_{83}...b_{31}$ $b_{30}b_{29}...b_0$ $b_{95}b_{94}...b_{88}$ $b_{87}b_{86}b_{85}$ Position Coding 00111100 Integer Unpadded Partition Table 14-24 Integer Method

3670 14.5.8.2 CPI -var coding table

3671 **Table 14-27** CPI-var coding table

Table 14-27 CPT-val couling table								
Scheme	CPI-var							
URI Template	urn:epc:tag:	urn:epc:tag:cpi-var:F.C.P.S						
Total Bits	Variable: betwee	Variable: between 86 and 224 bits (inclusive)						
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Component/P art Reference	Serial		

Scheme	CPI-var					
Logical Segment Bit Count	8	3	3	20-40	12-150 (variable)	40 (fixed)
Coding Segment	EPC Header	Filter	Component/Part Identifier			Component/P art Serial Number
URI portion		F	С.Р			S
Coding Segment Bit Count	8	3	Up to 173 bits			40
Bit Position	b _{B-1} b _{B-2} b _{B-8}	<i>b</i> в-9 <i>b</i> в-10 <i>b</i> в-11	<i>b</i> _{B-12} <i>b</i> _{B-13} <i>b</i> ₄₀		b39b38b0	
Coding Method	00111101	Integer	6-Bit Varial <u>14-25</u>	ole String Part	ition <u>Table</u>	Integer

3672 14.5.9 Global Coupon Number (SGCN)

- A lone, 96-bit coding scheme (SGCN-96) is specified for the SGCN, allowing for the full range of coupon serial component numbers up to 12 numeric characters (including leading zeros) as specified in [GS1GS]. Only SGCNs that include the serial number may be represented as EPCs. A GCN without a serial number represents a coupon class, rather than a specific coupon, and therefore may not be used as an EPC (just as a non-serialised GTIN may not be used as an EPC).
- 3678 The SGCN coding scheme makes reference to the following partition table.

3679 **Table 14-28** SGCN Partition Table

Partition Value (<i>P</i>)	Company Prefix		Coupon Reference	
	Bits (<i>M</i>)	Digits (L)	Bits (N)	Digits
0	40	12	1	0
1	37	11	4	1
2	34	10	7	2
3	30	9	11	3
4	27	8	14	4
5	24	7	17	5
6	20	6	21	6

3680 14.5.9.1 SGCN-96 coding table

3681 Table 14-29 SGCN-96 coding table

Scheme	SGCN-96	SGCN-96				
URI Template	urn:epc:tag	urn:epc:tag:sgcn-96:F.C.D.S				
Total Bits	96	96				
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix	Coupon Reference	Serial Component
Logical Segment Bit Count	8	3	3	20-40	21-1	41

Scheme	SGCN-96			
Coding Segment	EPC Header	Filter	Partition + Company Prefix + Coupon Reference	Serial
URI portion		F	<i>C</i> . <i>D</i>	S
Coding Segment Bit Count	8	3	44	41
Bit Position	b95b94b88	b ₈₇ b ₈₆ b ₈₅	b ₈₄ b ₈₃ b ₄₁	b40b39b0
Coding Method	00111111	Integer	Partition <u>Table 14-28</u>	NumericString

3682 14.5.10 Individual Trade Item Piece (ITIP)

- 3683Two coding schemes for the ITIP are specified, a 110-bit encoding (ITIP-110) and a 212-bit3684encoding (ITIP-212). The ITIP-212 encoding allows for the full range of serial numbers up to 203685alphanumeric characters as specified in [GS1GS]. The ITIP-110 encoding allows for numeric-only3686serial numbers, without leading zeros, whose value is less than 2³⁸ (that is, from 0 through3687274,877,906,943, inclusive).
- 3688 Both ITIP coding schemes make reference to the following partition table.

3689 Table 14-30 ITIP Partition Table

Partition Value (P)	GS1 Company Prefix		Indicator/Pad Digit and Item Reference		
	Bits (<i>M</i>)	Digits (L)	Bits (N)	Digits	
0	40	12	4	1	
1	37	11	7	2	
2	34	10	10	3	
3	30	9	14	4	
4	27	8	17	5	
5	24	7	20	6	
6	20	6	24	7	

3690 14.5.10.1 ITIP-110 coding table

3691 Table 14-31 ITIP-110 coding table

Scheme	ITIP-110	ITIP-110						
URI Template	urn:epc:ta	<pre>urn:epc:tag:itip-110:F.C.I.PT.S</pre>						
Total Bits	110	10						
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix (*)	Indicator (**) / Item Reference	Piece	Total	Serial
Logical Segment Bit Count	8	3	3	20-40	24-4	7	7	38
Coding Segment	EPC Header	Filter	GTIN			Piece	Total	Serial
URI portion		F	C.I			Р	Т	S

Scheme	ITIP-110					
Coding Segment Bit Count	8	3	47	7	7	38
Bit Position	b109b108b102	b101b100b99	<i>b</i> 98 <i>b</i> 97 <i>b</i> 52	b ₅₁ b ₅₀ b ₄₅	B44b43b38	b37b36b0
Coding Method	01000000	Integer	Partition <u>Table 14-2</u>	Fixed Width Integer	Fixed Width Integer	Integer

(*) See Section <u>7.1.2</u> for the case of an SGTIN derived from a GTIN-8.

3693(**) Note that in the case of an ITIP derived from a GTIN-12 or GTIN-13, a zero pad digit takes the3694place of the Indicator Digit. In all cases, see Section 7.1 for the definition of how the Indicator Digit3695(or zero pad) and the Item Reference are combined into this segment of the EPC.

3696 14.5.10.2 ITIP-212 coding table

3697 Table 14-32 ITIP-212 coding table

Scheme	ITIP-212							
URI Template	urn:epc:ta	g:itip-212	:F.C.I.PI	r.s				
Total Bits	212							
Logical Segment	EPC Header	Filter	Partition	GS1 Company Prefix (*)	Indicator (**) / Item Reference	Piece	Total	Serial
Logical Segment Bit Count	8	3	3	20-40	24-4	7	7	140
Coding Segment	EPC Header	Filter	GTIN	GTIN		Piece	Total	Serial
URI portion		F	C.I	C.I		P	Т	S
Coding Segment Bit Count	8	3	47			7	7	140
Bit Position	b ₂₁₁ b ₂₁₀ b ₂₀₄	b203b202b201	b200b199k	b200b199b154 b153b152			b146b145b140	b139b138b0
Coding Method	01000001	Integer	Partition	Table 14-2		Fixed Width Integer	Fixed Width Integer	String

3698

- 3699 (*) See
- (*) See Section 7.1.2 for the case of an SGTIN derived from a GTIN-8.
- 3700(**) Note that in the case of an ITIP derived from a GTIN-12 or GTIN-13, a zero pad digit takes the3701place of the Indicator Digit. In all cases, see Section 7.1 for the definition of how the Indicator Digit3702(or zero pad) and the Item Reference are combined into this segment of the EPC.
- 3703

3704 14.5.11General Identifier (GID)

3705One coding scheme for the GID is specified: the 96-bit encoding GID-96. No partition table is3706required.

3707 14.5.11.1 GID-96 coding table

3708

Table 14-33 GID-96 coding table

Table 14-33 GID-96				
Scheme	GID-96			
URI Template	urn:epc:tag:gi	d-96: <i>M.C.S</i>		
Total Bits	96			
Logical Segment	EPC Header	General Manager Number	Object Class	Serial Number
Logical Segment Bit Count	8	28	24	36
Coding Segment	EPC Header	General Manager Number	Object Class	Serial Number
URI portion		Μ	С	S
Coding Segment Bit Count	8	28	24	36
Bit Position	b95b94b88	b ₈₇ b ₈₆ b ₆₀	b59b58b36	b ₃₅ b ₃₄ b ₀
Coding Method	00110101	Integer	Integer	Integer

3709 14.5.12DoD Identifier

3710At the time of this writing, the details of the DoD encoding is explained in a document titled "United3711States Department of Defense Supplier's Passive RFID Information Guide" that can be obtained at3712the United States Department of Defense's web site (http://www.dodrfid.org/supplierguide.htm).

3713 14.5.13ADI Identifier (ADI)

3714One coding scheme for the ADI identifier is specified: the variable-length encoding ADI-var. No3715partition table is required.

3716 14.5.13.1 ADI-var coding table

3717 **Table 14-34** ADI-var coding table

Table 14-34 P	DI-var coding tak	ne						
Scheme	ADI-var	ADI-var						
URI Template	urn:epc:tag:ac	li-var:F.D.P.S						
Total Bits	Variable: between	68 and 434 bits (incl	lusive)					
Logical Segment	EPC Header	Filter	CAGE/ DoDAAC	Part Number	Serial Number			
Logical Segment Bit Count	8	6	36	Variable	Variable			
Coding Segment	EPC Header	Filter	CAGE/ DoDAAC	Part Number	Serial Number			
URI Portion		F	D	Р	S			
Coding Segment Bit Count	8	6	36	Variable (6 – 198)	Variable (12 – 186)			
Bit Position	b _{B-1} b _{B-2} b _{B-8}	b _{B-9} b _{B-10} b _{B-14}	b _{B-15} b _{B-16} b _{B-50}	$b_{B-51}b_{B-52}$	b ₁ b ₀			
Coding Method	00111011	Integer	6-bit CAGE/ DoDAAC	6-bit Variable String	6-bit Variable String			

3718

- The number of characters in the Part Number segment must be greater than or equal to zero and less than or equal to 32. In the binary encoding, a 6-bit zero terminator is always present.
- The number of characters in the Serial Number segment must be greater than or equal to one and less than or equal to 30. In the binary encoding, a 6-bit zero terminator is always present.
- 3723The "#" character (represented in the URI by the escape sequence %23) may appear as the first3724character of the Serial Number segment, but otherwise may not appear in the Part Number segment3725or elsewhere in the Serial Number segment.

3726 15 EPC Memory Bank contents

This section specifies how to translate the EPC Tag URI and EPC Raw URI into the binary contents of the EPC memory bank of a Gen 2 Tag, and vice versa.

3729 15.1 Encoding procedures

3730This section specifies how to translate the EPC Tag URI and EPC Raw URI into the binary contents of3731the EPC memory bank of a Gen 2 Tag.

3732 15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank

3733 Given:

3739

3734 An EPC Tag URI beginning with urn:epc:tag:

3735 Encoding procedure:

- 1. If the URI is not syntactically valid according to Section <u>12.4</u>, stop: this URI cannot be encoded.
- 3737
 3738
 2. Apply the encoding procedure of Section <u>14.3</u> to the URI. The result is a binary string of *N* bits. If the encoding procedure fails, stop: this URI cannot be encoded.
 - 3. Fill in the Gen 2 EPC Memory Bank according to the following table:

3740 **Table 15-1** Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI

Bits	Field	Contents			
$00_h - 0F_h$	CRC	CRC code calculated from the remainder of the memory bank. (Normally, this is calculated automatically by the reader, and so software that implements this procedure need not be concerned with it.)			
10 _h - 14 _h	Length	The number of bits, N , in the EPC binary encoding determined in Step 2 above, divided by 16, and rounded up to the next higher integer if N was not a multiple of 16.			
15 _h	User Memory	If the EPC Tag URI includes a control field [umi=1], a one bit.			
	Indicator	If the EPC Tag URI includes a control field [umi=0] or does not contain a umi control field, a zero bit.			
		Note that certain Gen 2 Tags may ignore the value written to this bit, and instead calculate the value of the bit from the contents of user memory. See [UHFC1G2].			
16 _h	XPC Indicator	This bit is calculated by the tag and ignored by the tag when the tag is written, and so is disregarded by this encoding procedure.			
17 _h	Toggle	0, indicating that the EPC bank contains an EPC			
18 _h – 1F _h	Attribute Bits	If the EPC Tag URI includes a control field [att=xNN], the value NN considered as an 8-bit hexadecimal number. If the EPC Tag URI does not contain such a control field, zero.			
20 _h – ?	EPC / UII	The <i>N</i> bits obtained from the EPC binary encoding procedure in Step 2 above,			
		followed by enough zero bits to bring the total number of bits to a multiple of 16 (0 – 15 extra zero bits)			

Non-Normative: Explanation (non-normative): The XPC bits (bits $210_h - 21F_h$) are not included in this procedure, because the only XPC bits defined in [UHFC1G2] are bits which are written indirectly via recommissioning. Those bits are not intended to be written explicitly by an application.

3745 15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank

3746	Given:
3747 3748	 An EPC Raw URI beginning with urn:epc:raw:. Such a URI has one of the following three forms:
3749	urn:epc:raw:OptionalControlFields:Length.xHexPayload
3750	urn:epc:raw:OptionalControlFields:Length.xAFI.xHexPayload
3751	$\verb"urn:epc:raw:OptionalControlFields:Length.DecimalPayload"$
3752	Encoding procedure:
3753 3754	 If the URI is not syntactically valid according to the grammar in Section <u>12.4</u>, stop: this URI cannot be encoded.
3755 3756 3757	2. Extract the leftmost NonZeroComponent according to the grammar (the Length field in the templates above). This component immediately follows the rightmost colon (:) character. Consider this as a decimal integer, N. This is the number of bits in the raw payload.
3758	3. Determine the toggle bit and AFI (if any):
3759 3760	a. If the body of the URI matches the DecimalRawURIBody or HexRawURIBody production of the grammar (the first and third templates above), the toggle bit is zero.
3761 3762 3763 3764 3765	b. If the body of the URI matches the AFIRawURIBody production of the grammar (the second template above), the toggle bit is one. The AFI is the value of the leftmost HexComponent within the AFIRawURIBody (the AFI field in the template above), considered as an 8-bit unsigned hexadecimal integer. If the value of the HexComponent is greater than or equal to 256, stop: this URI cannot be encoded.
3766	4. Determine the EPC/UII payload:
3767 3768 3769 3770 3771 3772	c. If the body of the URI matches the HexRawURIBody production of the grammar (first template above) or AFIRawURIBody production of the grammar (second template above), the payload is the rightmost HexComponent within the body (the HexPayload field in the templates above), considered as an N-bit unsigned hexadecimal integer, where N is as determined in Step 2 above. If the value of this HexComponent greater than or equal to 2 ^N , stop: this URI cannot be encoded.
3773 3774 3775 3776 3777	d. If the body of the URI matches the DecimalRawURIBody production of the grammar (third template above), the payload is the rightmost NumericComponent within the body (the DecimalPayload field in the template above), considered as an N-bit unsigned decimal integer, where N is as determined in Step 2 above. If the value of this NumericComponent greater than or equal to 2 ^N , stop: this URI cannot be encoded.
3778	5. Fill in the Gen 2 EPC Memory Bank according to the following table:
2770	Teles 45, 9 Designs to Fill by Com 2 EDC Management Devils frame EDC Devis UDI

3779 Table 15-2 Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI

Bits	Field	Contents
$00_h - 0F_h$	CRC	CRC code calculated from the remainder of the memory bank. (Normally, this is calculated automatically by the reader, and so software that implements this procedure need not be concerned with it.)
10 _h – 14 _h	Length	The number of bits, <i>N</i> , in the EPC binary encoding determined in Step 2 above, divided by 16, and rounded up to the next higher integer if <i>N</i> was not a multiple of 16.

Bits	Field	Contents
15 _h	User Memory Indicator	This bit is calculated by the tag and ignored by the tag when the tag is written, and so is disregarded by this encoding procedure.
16 _h	XPC Indicator	This bit is calculated by the tag and ignored by the tag when the tag is written, and so is disregarded by this encoding procedure.
17 _h	Toggle	The value determined in Step 3, above.
18 _h – 1F _h	AFI / Attribute Bits	If the toggle determined in Step 3 is one, the value of the AFI determined in Step 3.2. Otherwise,
		If the URI includes a control field $[att=xNN]$, the value NN considered as an 8-bit hexadecimal number.
		If the URI does not contain such a control field, zero.
20 _h – ?	EPC / UII	The <i>N</i> bits determined in Step 4 above, followed by enough zero bits to bring the total number of bits to a multiple of $16 (0 - 15 \text{ extra zero bits})$

3780 15.2 Decoding procedures

3781 3782

3785

This section specifies how to translate the binary contents of the EPC memory bank of a Gen 2 Tag into the EPC Tag URI and EPC Raw URI.

3783 15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI

3784 **Given**:

The contents of the EPC Memory Bank of a Gen 2 tag

3786 Procedure:

- 3787 **1.** Extract the length bits, bits $10_h 14_h$. Consider these bits to be an unsigned integer *L*.
- 3788 2. Calculate N = 16L.
- 37893. If bit 17_h is set to one, extract bits $18_h 1F_h$ and consider them to be an unsigned integer A.3790Construct a string consisting of the letter "x", followed by A as a 2-digit hexadecimal numeral3791(using digits and uppercase letters only), followed by a period (".").
- 4. Apply the decoding procedure of Section <u>15.2.4</u> to decode control fields.
- 37935.Extract N bits beginning at bit 20h and consider them to be an unsigned integer V. Construct a
string consisting of the letter "x" followed by V as a (N/4)-digit hexadecimal numeral (using
digits and uppercase letters only).
- 6. Construct a string consisting of "urn:epc:raw:", followed by the result from Step 4 (if not empty), followed by *N* as a decimal numeral without leading zeros, followed by a period ("."), followed by the result from Step 3 (if not empty), followed by the result from Step 5. This is the final EPC Raw URI.

3800 15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI

3801This procedure decodes the contents of a Gen 2 EPC Memory bank into an EPC Tag URI beginning3802with urn:epc:tag: if the memory contains a valid EPC, or into an EPC Raw URI beginning3803urn:epc:raw: otherwise.

3804 Given:

3805 The contents of the EPC Memory Bank of a Gen 2 tag

3806 Procedure:

- 3807 1. Extract the length bits, bits $10_h 14_h$. Consider these bits to be an unsigned integer *L*.
- 3808 2. Calculate N = 16L.

3809 3810		 Extract <i>N</i> bits beginning at bit 20_h. Apply the decoding procedure of Section <u>14.3.9</u>, passing the <i>N</i> bits as the input to that procedure.
3811 3812 3813		4. If the decoding procedure of Section <u>14.3.9</u> fails, continue with the decoding procedure of Section <u>15.2.1</u> to compute an EPC Raw URI. Otherwise, the decoding procedure of Section <u>14.3.9</u> yielded an EPC Tag URI beginning urn:epc:tag:. Continue to the next step.
3814		5. Apply the decoding procedure of Section <u>15.2.4</u> to decode control fields.
3815 3816 3817 3818		6. Insert the result from Section <u>15.2.4</u> (including any trailing colon) into the EPC Tag URI obtained in Step 4, immediately following the urn:epc:tag: prefix. (If Section <u>15.2.4</u> yielded an empty string, this result is identical to what was obtained in Step 4.) The result is the final EPC Tag URI.
3819	15.2.3	Gen 2 EPC Memory Bank into Pure I dentity EPC URI
3820 3821 3822		This procedure decodes the contents of a Gen 2 EPC Memory bank into a Pure Identity EPC URI beginning with urn:epc:id: if the memory contains a valid EPC, or into an EPC Raw URI beginning urn:epc:raw: otherwise.
3823		Given:
3824		The contents of the EPC Memory Bank of a Gen 2 tag
3825		Procedure:
3826 3827		 Apply the decoding procedure of Section <u>15.2.2</u> to obtain either an EPC Tag URI or an EPC Raw URI. If an EPC Raw URI is obtained, this is the final result.
3828 3829		 Otherwise, apply the procedure of Section <u>12.3.3</u> to the EPC Tag URI from Step 1 to obtain a Pure Identity EPC URI. This is the final result.
3830	15.2.4	Decoding of control information
3831 3832 3833 3834 3835		This procedure is used as a subroutine by the decoding procedures in Sections <u>15.2.1</u> and <u>15.2.2</u> . It calculates a string that is inserted immediately following the urn:epc:tag: or urn:epc:raw: prefix, containing the values of all non-zero control information fields (apart from the filter value). If all such fields are zero, this procedure returns an empty string, in which case nothing additional is inserted after the urn:epc:tag: or urn:epc:raw: prefix.
3836		Given:
3837		 The contents of the EPC Memory Bank of a Gen 2 tag
3838		Procedure:
3839 3840 3841		1. If bit 17_h is zero, extract bits $18_h - 1F_h$ and consider them to be an unsigned integer <i>A</i> . If <i>A</i> is non-zero, append the string [att=xAA] (square brackets included) to <i>CF</i> , where AA is the value of <i>A</i> as a two-digit hexadecimal numeral.
3842		2. If bit 15 _h is non-zero, append the string [umi=1] (square brackets included) to CF.
3843 3844 3845 3846 3847		3. If bit 16_h is non-zero, extract bits $210_h - 21F_h$ and consider them to be an unsigned integer <i>X</i> . If <i>X</i> is non-zero, append the string [xpc=xXXXX] (square brackets included) to <i>CF</i> , where xxxx is the value of <i>X</i> as a four-digit hexadecimal numeral. Note that in the Gen 2 air interface, bits $210_h - 21F_h$ are inserted into the backscattered inventory data immediately following bit $1F_h$, when bit 16_h is non-zero. See [UHFC1G2].
3848		4. Return the resulting string (which may be empty).

3851 3852

3853

3854

3855

3860

3882

3883

3884

3885 3886

3887

3888

3889

3890

3891

3892

16 Tag Identification (TID) Memory Bank Contents

To conform to this specification, the Tag Identification memory bank (bank 10) SHALL contain an 8 bit ISO/IEC 15963 allocation class identifier of E2_h at memory locations 00_h to 07_h. TID memory above location 07_h SHALL be configured as follows:

- 08h: XTID (X) indicator (whether a Tag implements Extended Tag Identification, XTID)
- 09_h: Security (S) indicator (whether a Tag supports the Authenticate and/or Challenge commands)
- 3856 OA_{h:} File (**F**) indicator (whether a Tag supports the *FileOpen* command)
- 3857 OB_h to 13_h: a 9-bit mask-designer identifier (**MDID**) available from GS1
- 3858 14_h to 1F_h: a 12-bit, Tag-manufacturer-defined Tag Model Number (TMN)
- above 1F_h: as defined in section 16.2 below

3861 The Tag model number (TMN) may be assigned any value by the holder of a given MDID. However, 3862 [UHFC1G2] states "TID memory locations above 07_h shall be defined according to the registration 3863 authority defined by this class identifier value and shall contain, at a minimum, sufficient identifying 3864 information for an Interrogator to uniquely identify the custom commands and/or optional features 3865 that a Tag supports." For the allocation class identifier of E2_h this information is the MDID and TMN, 3866 regardless of whether the extended TID is present or not. If two tags differ in custom commands 3867 and/or optional features, they must be assigned different MDID/TMN combinations. In particular, if two tags contain an extended TID and the values in their respective extended TIDs differ in any 3868 3869 value other than the value of the serial number, they must be assigned a different MDID/TMN 3870 combination. (The serial number by definition must be different for any two tags having the same MDID and TMN, so that the Serialised Tag Identification specified in Section <u>16.3</u> is globally unique.) 3871 3872 For tags that do not contain an extended TID, it should be possible in principle to use the MDID and 3873 TMN to look up the same information that would be encoded in the extended TID were it actually present on the tag, and so again a different MDID/TMN combination must be used if two tags differ 3874 3875 in the capabilities as they would be described by the extended TID, were it actually present.

3876 16.1 Short Tag Identification (TID)

If the XTID indicator ("X" bit 08_h of the TID bank) is set to zero, the TID bank only contains the
 allocation class identifier, XTID ("X"), Security ("S") and File ("F") indicators, the mask designer
 identifier (MDID), and Tag model number (TMN), as specified above. Readers and applications that
 are not configured to handle the extended TID will treat all TIDs as short tag identification,
 regardless of whether the XTID indicator is zero or one.

Note: The memory maps depicted in this document are identical to how they are depicted in [UHFC1G2]. The lowest word address starts at the bottom of the map and increases as you go up the map. The bit address reads from left to right starting with bit zero and ending with bit fifteen. The fields (MDID, TMN, etc) described in the document put their most significant bit (highest bit number) into the lowest bit address in memory and the least significant bit (bit zero) into the highest bit address in memory. Take the ISO/IEC 15963 allocation class identifier of E2h = 111000102 as an example. The most significant bit of this field is a one and it resides at address 00h of the TID memory bank. The least significant bit value is a zero and it resides at address 07h of the TID memory bank. When tags backscatter data in response to a read command they transmit each word starting from bit address zero and ending with bit address fifteen.

3893 Table 16-1 Short TID format

TID MEM BANK BIT	BIT	ADDR	ESS W	VITHIN	N WOF	RD (In	Hexa	decim	al)								
ADDRESS	0 1 2 3 4 5 6 7 8 9 A B C D E F								F								
10 _h -1F _h	MDI	D[3:0]]		TAG	TAG MODEL NUMBER[11:0]											

TID MEM BANK BIT	BIT	ADDR	ESS V	VITHI	N WOF	RD (In	Hexa	Idecim	nal)							
ADDRESS	0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
00h-0Fh	E2 _h	E2h							Х	S	F	MDI	D [8:4]		

3894 16.2 Extended Tag identification (XTID)

3895The XTID is intended to provide more information to end users about the capabilities of tags that3896are observed in their RFID applications. The XTID extends the format by adding support for3897serialisation and information about key features implemented by the tag.

If the XTID bit (bit 08_h of the TID bank) is set to one, the TID bank SHALL contain the allocation
 class identifier, mask designer identifier (MDID), and Tag model number (TMN) as specified above,
 and SHALL also contain additional information as specified in this section.

- 3901If the XTID bit as defined above is one, TID memory locations 20_h to $2F_h$ SHALL contain a 16-bit3902XTID header as specified in Section <u>16.2.1</u>. The values in the XTID header specify what additional3903information is present in memory locations 30_h and above. TID memory locations 00_h through $2F_h$ 3904are the only fixed location fields in the extended TID; all fields following the XTID header can vary in3905their location in memory depending on the values in the XTID header.
- 3906 The information in the XTID following the XTID header SHALL consist of zero or more multi-word "segments," each segment being divided into one or more "fields," each field providing certain 3907 3908 information about the tag as specified below. The XTID header indicates which of the XTID 3909 segments the tag mask-designer has chosen to include. The order of the XTID segments in the TID 3910 bank shall follow the order that they are listed in the XTID header from most significant bit to least significant bit. If an XTID segment is not present then segments at less significant bits in the XTID 3911 header shall move to lower TID memory addresses to keep the XTID memory structure contiguous. 3912 3913 In this way a minimum amount of memory is used to provide a serial number and/or describe the 3914 features of the tag. A fully populated XTID is shown in the table below.
- 3915 Non-Normative: The XTID header corresponding to this memory map would be 3916 0011110000000002. If the tag only contained a 48 bit serial number the XTID header would 3917 be 00100000000000_2 . The serial number would start at bit address 30_h and end at bit 3918 address 5F_h. If the tag contained just the BlockWrite and BlockErase segment and the User 3919 Memory and BlockPermaLock segment the XTID header would be 00001100000000002. The 3920 BlockWrite and BlockErase segment would start at bit address 30_h and end at bit address 6F_h. 3921 The User Memory and BlockPermaLock segment would start at bit address 70_h and end at bit 3922 address 8Fh.
- Table 16-2 The Extended Tag Identification (XTID) format for the TID memory bank. Note that the table above
 is fully filled in and that the actual amount of memory used, presence of a segment, and address location of a
 segment depends on the XTID Header.

TDS Reference	TID MEM BANK BIT ADDRESS	BIT ADDRESS WITHIN WORD (In Hexadecimal)															
Section		0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
<u>16.2.5</u>	CO _h -CF _h	User	User Memory and BlockPermaLock Segment [15:0]														
	BO _h -BF _h	User Memory and BlockPermaLock Segment [31:16]															
<u>16.2.4</u>	AO _h -AF _h	Bloo	BlockWrite and BlockErase Segment [15:0]														
	90 _h -9F _h	Bloc	kWrite	and	Block	Erase	Segm	ent [3	1:16]								
	80h-8Fh	Bloc	kWrite	e and	Block	Erase	Segm	ent [4	7:32]								
	70 _h -7F _h	Bloc	kWrite	e and	Block	Erase	Segm	ent [6	3:48]								
<u>16.2.3</u>	60 _h -6F _h	Optional Command Support Segment [15:0]															
<u>16.2.2</u>	50h-5Fh	Seria	Serial Number Segment [15:0]														
	40 _h -4F _h	Seria	al Nun	nber S	Segme	nt [37	1:16]										

TDS Reference	TID MEM BANK BIT ADDRESS	BIT	BIT ADDRESS WITHIN WORD (In Hexadecimal)														
Section		0	1	2	3	4	5	6	7	8	9	А	В	С	D	E	F
	30h-3Fh	Seri	erial Number Segment [47:32]														
<u>16.2.1</u>	20 _h -2F _h	XTIC	D Head	der Se	egmer	nt [15:	0]										
<u>16.1</u>	10 _h -1F _h	Refe	Refer to Table 16-1 Short TID format														
	00h-0Fh																

16.2.1 XTID Header 3926

- 3927 The XTID header is shown in <u>Table 16-3</u>. It contains defined and reserved for future use (RFU) bits. The extended header bit and RFU bits (bits 9 through 0) shall be set to zero to comply with this 3928 3929 version of the specification. Bits 15 through 13 of the XTID header word indicate the presence and 3930 size of serialisation on the tag. If they are set to zero then there is no serialisation in the XTID. If they are not zero then there is a tag serial number immediately following the header. The optional 3931 features currently in bits 12 through 10 are handled differently. A zero indicates the reader needs to 3932 3933 perform a database look up or that the tag does not support the optional feature. A one indicates 3934 that the tag supports the optional feature and that the XTID contains the segment describing this 3935 feature.
- 3936 Note that the contents of the XTID header uniquely determine the overall length of the XTID as well 3937 as the starting address for each included XTID segment.

Bit Position in Word	Field	Description
0	Extended Header Present	If non-zero, specifies that additional XTID header bits are present beyond the 16 XTID header bits specified herein. This provides a mechanism to extend the XTID in future versions of the EPC Tag Data Standard. This bit SHALL be set to zero to comply with this version of the EPC Tag Data Standard.
		If zero, specifies that the XTID header only contains the 16 bits defined herein.
9 – 1	RFU	Reserved for future use. These bits SHALL be zero to comply with this version of the EPC Tag Data Standard
10	User Memory and Block Perma Lock Segment Present	If non-zero, specifies that the XTID includes the User Memory and Block PermaLock segment specified in Section <u>16.2.5</u> . If zero, specifies that the XTID does not include the User Memory and Block PermaLock words.
11	BlockWrite and BlockErase Segment Present	If non-zero, specifies that the XTID includes the BlockWrite and BlockErase segment specified in Section <u>16.2.4</u> . If zero, specifies that the XTID does not include the BlockWrite and BlockErase words.
12	Optional Command Support Segment Present	If non-zero, specifies that the XTID includes the Optional Command Support segment specified in Section <u>16.2.3</u> . If zero, specifies that the XTID does not include the Optional Command Support word.
13 – 15	Serialisation	If non-zero, specifies that the XTID includes a unique serial number, whose length in bits is $48 + 16(N - 1)$, where N is the value of this field. If zero, specifies that the XTID does not include a unique serial number.

3938 Table 16-3 The XTID header

16.2.2 XTID Serialisation 3939

- 3940
- The length of the XTID serialisation is specified in the XTID header. The managing entity specified 3941 by the tag mask designer ID is responsible for assigning unique serial numbers for each tag model number. The length of the serial number uses the following algorithm: 3942
- 3943 0: Indicates no serialisation

3944 1-7: Length in bits = 48 + ((Value-1) * 16)

3945 16.2.3 Optional Command Support segment

3946If bit twelve is set in the XTID header then the following word is added to the XTID. Bit fields that3947are left as zero indicate that the tag does not support that feature. The description of the features is3948as follows.

3949 Table 16-4 Optional Command Support XTID Word

Bit Position in Segment	Field	Description
4 – 0	Max EPC Size	This five bit field shall indicate the maximum size that can be programmed into the first five bits of the PC.
5	Recom Support	If this bit is set, the tag supports recommissioning as specified in [UHFC1G2].
6	Access	If this bit is set, it indicates that the tag supports the access command.
7	Separate Lockbits	If this bit is set, it means that the tag supports lock bits for each memory bank rather than the simplest implementation of a single lock bit for the entire tag.
8	Auto UMI Support	If this bit is set, it means that the tag automatically sets its user memory indicator bit in the PC word.
9	PJM Support	If this bit is set, it indicates that the tag supports phase jitter modulation. This is an optional modulation mode supported only in Gen 2 HF tags.
10	BlockErase Supported	If set, this indicates that the tag supports the BlockErase command. How the tag supports the BlockErase command is described in Section <u>16.2.4</u> . A manufacture may choose to set this bit, but not include the BlockWrite and BlockErase field if how to use the command needs further explanation through a database lookup.
11	BlockWrite Supported	If set, this indicates that the tag supports the BlockWrite command. How the tag supports the BlockErase command is described in Section <u>16.2.4</u> . A manufacture may choose to set this bit, but not include the BlockWrite and BlockErase field if how to use the command needs further explanation through a database lookup.
12	BlockPermaLock Supported	If set, this indicates that the tag supports the BlockPermaLock command. How the tag supports the BlockPermaLock command is described in Section <u>16.2.5</u> . A manufacture may choose to set this bit, but not include the BlockPermaLock and User Memory field if how to use the command needs further explanation through a database lookup.
15 – 13	[RFU]	These bits are RFU and should be set to zero.

3950 16.2.4 BlockWrite and BlockErase segment

3951If bit eleven of the XTID header is set then the XTID shall include the four-word BlockWrite and3952BlockErase segment. To indicate that a command is not supported, the tag shall have all fields3953related to that command set to zero. This SHALL always be the case when the Optional Command3954Support Segment (Section <u>16.2.3</u>) is present and it indicates that BlockWrite or BlockErase is not3955supported. The descriptions of the fields are as follows.

3956 Table 16-5 XTID Block Write and Block Erase Information

Bit Position in Segment	Field	Description
7 – 0	Block Write Size	Max block size that the tag supports for the BlockWrite command. This value should be between 1-255 if the BlockWrite command is described in this field.
8	Variable Size Block Write	This bit is used to indicate if the tag supports BlockWrite commands with variable sized blocks.
		If the value is zero the tag only supports writing blocks exactly the maximum block size indicated in bits [7-0].
		If the value is one the tag supports writing blocks less than the maximum block size indicated in bits [7-0].
16 – 9	Block Write EPC Address Offset	This indicates the starting word address of the first full block that may be written to using BlockWrite in the EPC memory bank.

Bit Position in Segment	Field	Description
17	No Block Write EPC address alignment	This bit is used to indicate if the tag memory architecture has hard block boundaries in the EPC memory bank. If the value is zero the tag has hard block boundaries in the EPC memory bank. The tag will not accept BlockWrite commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size. If the value is one the tag has no block boundaries in the EPC memory bank. It will accept all BlockWrite commands that are within the memory bank.
25 – 18	Block Write User Address Offset	This indicates the starting word address of the first full block that may be written to using BlockWrite in the User memory.
26	No Block Write User Address Alignment	This bit is used to indicate if the tag memory architecture has hard block boundaries in the USER memory bank. If the value is zero the tag has hard block boundaries in the USER memory bank. The tag will not accept BlockWrite commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size. If the value is one the tag has no block boundaries in the USER memory bank. It will accept all BlockWrite commands that are within the memory bank.
31 – 27	[RFU]	These bits are RFU and should be set to zero.
39 –32	Size of Block Erase	Max block size that the tag supports for the BlockErase command. This value should be between 1-255 if the BlockErase command is described in this field.
40	Variable Size Block Erase	This bit is used to indicate if the tag supports BlockErase commands with variable sized blocks. If the value is zero the tag only supports erasing blocks exactly the maximum block size indicated in bits [39-32]. If the value is one the tag supports erasing blocks less than the maximum block size indicated in bits [39-32].
48 – 41	Block Erase EPC Address Offset	This indicates the starting address of the first full block that may be erased in EPC memory bank.
49	No Block Erase EPC Address Alignment	This bit is used to indicate if the tag memory architecture has hard block boundaries in the EPC memory bank. If the value is zero the tag has hard block boundaries in the EPC memory bank. The tag will not accept BlockErase commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size. If the value is one the tag has no block boundaries in the EPC memory bank. It will accept all BlockErase commands that are within the memory bank.
57 – 50	Block Erase User Address Offset	This indicates the starting address of the first full block that may be erased in User memory bank.
58	No Block Erase User Address Alignment	Bit 58: This bit is used to indicate if the tag memory architecture has hard block boundaries in the USER memory bank. If the value is zero the tag has hard block boundaries in the USER memory bank. The tag will not accept BlockErase commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size. If the value is one the tag has no block boundaries in the USER memory bank. It will accept all BlockErase commands that are within the memory bank.
63 – 59	[RFU]	These bits are reserved for future use and should be set to zero.

3957 16.2.5 User Memory and BlockPermaLock segment

3958This two-word segment is present in the XTID if bit 10 of the XTID header is set. Bits 15-0 shall3959indicate the size of user memory in words. Bits 31-16 shall indicate the size of the blocks in the3960USER memory bank in words for the BlockPermaLock command. Note: These block sizes only apply3961to the BlockPermaLock command and are independent of the BlockWrite and BlockErase commands.

3962 Table 16-6 XTID Block PermaLock and User Memory Information

Bit Position in Segment	Field	Description
15 – 0	User Memory Size	Number of 16-bit words in user memory.
31 –16	BlockPermaLock Block Size	If non-zero, the size in words of each block that may be block permalocked. That is, the block permalock feature allows blocks of N *16 bits to be locked, where N is the value of this field.
		If zero, then the XTID does not describe the block size for the BlockPermaLock feature. The tag may or may not support block permalocking.
		This field SHALL be zero if the Optional Command Support Segment (Section <u>16.2.3</u>) is present and its BlockPermaLockSupported bit is zero.

3963 16.3 Serialised Tag Identification (STID)

This section specifies a URI form for the serialisation encoded within an XTID, called the Serialised Tag Identifier (STID). The STID URI form may be used by business applications that use the serialised TID to uniquely identify the tag onto which an EPC has been programmed. The STID URI is intended to supplement, not replace, the EPC for those applications that make use of RFID tag serialisation in addition to the EPC that uniquely identifies the physical object to which the tag is affixed; e.g., in an application that uses the STID to help ensure a tag has not been counterfeited.

3970 16.3.1 STID URI grammar

- 3971 The syntax of the STID URI is specified by the following grammar:
- 3972 STID-URI ::= "urn:epc:stid:" 2*("x" HexComponent ".") "x" HexComponent
- 3973where the first and second HexComponents SHALL consist of exactly three UpperHexChars and3974the third HexComponent SHALL consist of 12, 16, 20, 24, 28, 32, or 36 UpperHexChars.
- 3975The first HexComponent is the value of the Tag Mask Designer ID (MDID) as specified in Section397616.1. The second HexComponent is the value of the Tag Model Number as specified in Sections397716.1. The third HexComponent is the value of the XTID serial number as specified in Sections397816.2.1 and 16.2.2. The number of UpperHexChars in the third HexComponent is equal to the3979number of bits in the XTID serial number divided by four.

3980 16.3.2 Decoding procedure: TID Bank Contents to STID URI

- 3981The following procedure specifies how to construct an STID URI given the contents of the TID bank3982of a Gen 2 Tag.
- 3983 Given:

3984

3985

- The contents of the TID memory bank of a Gen 2 Tag, as a bit string b₀b₁...b_{N-1}, where the number of bits N is at least 48.
- 3986 Yields:
- 3987 An STID-URI

3988 Procedure:

39891. Bits $b_{0}...b_{7}$ should match the value 11100010. If not, stop: this TID bank contents does not
contain an XTID as specified herein.

3991 3992	2.	Bit <i>b</i> 8 should be set to one. If not, stop: this TID bank contents does not contain an XTID as specified herein.
3993	3.	Consider bits $b_{8}b_{19}$ as a 12 bit unsigned integer. This is the Tag Mask Designer ID (MDID).
3994	4.	Consider bits $b_{20}b_{31}$ as a 12 bit unsigned integer. This is the Tag Model Number.
3995 3996 3997 3998	5.	Consider bits $b_{32}b_{34}$ as a 3-bit unsigned integer V. If V equals zero, stop: this TID bank contents does not contain a serial number. Otherwise, calculate the length of the serial number L = 48 + 16(V - 1). Consider bits $b_{48}b_{49}b_{48+L-1}$ as an L-bit unsigned integer. This is the serial number.
3999 4000 4001 4002 4003 4004	6.	Construct the STID-URI by concatenating the following strings: the prefix $urn:epc:stid:$, the lowercase letter x, the value of the MDID from Step 3 as a 3-character hexadecimal numeral, a dot (.) character, the lowercase letter x, the value of the Tag Model Number from Step 4 as a 3-character hexadecimal numeral, a dot (.) character, the lowercase letter x, and the value of the serial number from Step 5 as a (L/4)-character hexadecimal numeral. Only uppercase letters A through F shall be used in constructing the hexadecimal numerals.

17 **User Memory Bank Contents** 4005

4006 The EPCglobal User Memory Bank provides a variable size memory to store additional data 4007 attributes related to the object identified in the EPC Memory Bank of the tag.

User memory may or may not be present on a given tag. When user memory is not present, bit 15_h 4008 4009 of the EPC memory bank SHALL be set to zero. When user memory is present and uninitialised, bit 4010 $15_{\rm h}$ of the EPC memory bank SHALL be set to zero and bits $03_{\rm h}$ through $07_{\rm h}$ of the User Memory 4011 bank SHALL be set to zero. When user memory is present and initialised, bit 15th of the Protocol 4012 Control Word in EPC memory SHALL be set to one to indicate the presence of encoded data in User Memory, and the user memory bank SHALL be programmed as specified herein. 4013

- 4014 To conform with this specification, the first eight bits of the User Memory Bank SHALL contain a 4015 Data Storage Format Identifier (DSFID) as specified in [ISO15962]. This maintains compatibility 4016 with other standards. The DSFID consists of three logical fields: Access Method, Extended Syntax 4017 Indicator, and Data Format. The Access Method is specified in the two most significant bits of the DSFID, and is encoded with the value "10" to designate the "Packed Objects" Access Method as 4018 4019 specified in Appendix I herein if the "Packed Objects" Access Method is employed, and is encoded 4020 with the value "00" to designate the "No-Directory" Access Method as specified in [ISO15962] if the 4021 "No-Directory" Access Method is employed. The next bit is set to one if there is a second DSFID byte 4022 present. The five least significant bits specify the Data Format, which indicates what data system 4023 predominates in the memory contents. If GS1 Application Identifiers (AIs) predominate, the value of 4024 "01001" specifies the GS1 Data Format 09 as registered with ISO, which provides most efficient 4025 support for the use of AI data elements. Appendix I through Appendix M of this specification contain 4026 the complete specification of the "Packed Objects" Access Method; it is expected that this content 4027 will appear as Annex <u>I</u> through <u>M</u>, respectively, of ISO/IEC 15962, 2nd Edition [ISO15962], when the 4028 latter becomes available A complete definition of the DSFID is specified in ISO/IEC 15962 [ISO15962]. A complete definition of the table that governs the Packed Objects encoding of 4029 4030 Application Identifiers (AIs) is specified by GS1 and registered with ISO under the procedures of 4031 ISO/IEC 15961, and is reproduced in <u>E.3</u>. This table is similar in format to the hypothetical example 4032 shown as Table L-1 in \underline{L} , but with entries to accommodate encoding of all valid Application 4033 Identifiers.
- 4034 A tag whose User Memory Bank programming conforms to this specification SHALL be encoded 4035 using either the Packed Objects Access Method or the No-Directory Access Method, provided that if 4036 the No-Directory Access Method is used that the "application-defined" compaction mode as specified in [ISO15962] SHALL NOT be used. A tag whose User Memory Bank programming conforms to this 4037 4038 specification MAY use any registered Data Format including Data Format 09.
- 4039 Where the Packed Objects specification in <u>I</u> makes reference to Extensible Bit Vectors (EBVs), the 4040 format specified in Appendix <u>D</u> SHALL be used.
- 4041 A hardware or software component that conforms to this specification for User Memory Bank 4042 reading and writing SHALL fully implement the Packed Objects Access Method as specified in 4043 Appendices \underline{I} through \underline{M} of this specification (implying support for all registered Data Formats),

4044SHALL implement the No-Directory Access Method as specified in [ISO15962], and MAY implement4045other Access Methods defined in [ISO15962] and subsequent versions of that standard. A hardware4046or software component NEED NOT, however, implement the "application-defined" compaction mode4047of the No-Directory Access Method as specified in [ISO15962]. A hardware or software component4048whose intended function is only to initialise tags (e.g., a printer) may conform to a subset of this4049specification by implementing either the Packed Objects or the No-Directory access method, but in4050this case NEED NOT implement both.

- 4051Image: Non-Normative: Explanation: This specification allows two methods of encoding data in user4052memory. The ISO/IEC 15962 "No-Directory" Access Method has an installed base owing to its4053longer history and acceptance within certain end user communities. The Packed Objects4054Access Method was developed to provide for more efficient reading and writing of tags, and4055less tag memory consumption.
- 4056The "application-defined" compaction mode of the No-Directory Access Method is not allowed4057because it cannot be understood by a receiving system unless both sides have the same4058definition of how the compaction works.
- 4059Note that the Packed Objects Access Method supports the encoding of data either with or4060without a directory-like structure for random access. The fact that the other access method is4061named "No-Directory" in [ISO15962] should not be taken to imply that the Packed Objects4062Access Method always includes a directory.

4063 **18 Conformance**

4064The EPC Tag Data Standard by its nature has an impact on many parts of the EPCglobal Architecture4065Framework. Unlike other standards that define a specific hardware or software interface, the Tag4066Data Standard defines data formats, along with procedures for converting between equivalent4067formats. Both the data formats and the conversion procedures are employed by a variety of4068hardware, software, and data components in any given system.

4069This section defines what it means to conform to the EPC Tag Data Standard. As noted above, there4070are many types of system components that have the potential to conform to various parts of the4071EPC Tag Data Standard, and these are enumerated below.

4072 18.1 Conformance of RFID Tag Data

- 4073The data programmed on a Gen 2 RFID Tag may be in conformance with the EPC Tag Data Standard4074as specified below. Conformance may be assessed separately for the contents of each memory4075bank.
- 4076 Each memory bank may be in an "uninitialised" state or an "initialised" state. The uninitialised state 4077 indicates that the memory bank contains no data, and is typically only used between the time a tag 4078 is manufactured and the time it is first programmed for use by an application. The conformance 4079 requirements are given separately for each state, where applicable.

4080 18.1.1 Conformance of Reserved Memory Bank (Bank 00)

4081The contents of the Reserved memory bank (Bank 00) of a Gen 2 tag is not subject to conformance4082to the EPC Tag Data Standard. The contents of the Reserved memory bank is specified in4083[UHFC1G2].

4084 **18.1.2 Conformance of EPC Memory Bank (Bank 01)**

- 4085The contents of the EPC memory bank (Bank 01) of a Gen 2 tag is subject to conformance to the4086EPC Tag Data Standard as follows.
- 4087The contents of the EPC memory bank conforms to the EPC Tag Data Standard in the uninitialised4088state if all of the following are true:
- Bit 17_h SHALL be set to zero.

4090		 Bits 18^h through 1F^h (inclusive), the attribute bits, SHALL be set to zero.
4091 4092		 Bits 20_h through 27_h (inclusive) SHALL be set to zero, indicating an uninitialised EPC Memory Bank.
4093 4094		 All other bits of the EPC memory bank SHALL be as specified in Section <u>9</u> and/or [UHFC1G2], as applicable.
4095 4096		The contents of the EPC memory bank conforms to the EPC Tag Data Standard in the initialised state if all of the following are true:
4097		Bit 17 _h SHALL be set to zero.
4098		Bits 18_h through $1F_h$ (inclusive), the attribute bits, SHALL be as specified in Section <u>11</u> .
4099 4100		 Bits 20_h through 27_h (inclusive) SHALL be set to a valid EPC header value as specified in <u>Table</u> <u>14-1</u> that is, a header value not marked as "reserved" or "unprogrammed tag" in the table.
4101 4102 4103 4104		• Let N be the value of the "encoding length" column of the row of <u>Table 14-1</u> corresponding to the header value, and let M be equal to $20_h + N - 1$. Bits 20_h through M SHALL be a valid EPC binary encoding; that is, the decoding procedure of Section <u>14.3.7</u> when applied to these bits SHALL NOT raise an exception.
4105 4106		 Bits M+1 through the end of the EPC memory bank or bit 20F_h (whichever occurs first) SHALL be set to zero.
4107 4108		 All other bits of the EPC memory bank SHALL be as specified in Section <u>9</u> and/or [UHFC1G2], as applicable.
4109 4110 4111		Non-Normative : Explanation: A consequence of the above requirements is that to conform to this specification, no additional application data (such as a second EPC) may be put in the EPC memory bank beyond the EPC that begins at bit 20 _h .
4112	18.1.3	Conformance of TID Memory Bank (Bank 10)
4113 4114		The contents of the TID memory bank (Bank 10) of a Gen 2 tag is subject to conformance to the EPC Tag Data Standard, as specified in Section <u>16</u> .
4115	18.1.4	Conformance of User Memory Bank (Bank 11)
4116 4117		The contents of the User memory bank (Bank 11) of a Gen 2 tag is subject to conformance to the EPC Tag Data Standard, as specified in Section <u>17</u> .
4118	18.2	Conformance of Hardware and Software Components
4119 4120 4121 4122 4123		Hardware and software components may process data that is read from or written to Gen 2 RFID tags. Hardware and software components may also manipulate Electronic Product Codes in various forms regardless of whether RFID tags are involved. All such uses may be subject to conformance to the EPC Tag Data Standard as specified below. Exactly what is required to conform depends on what the intended or claimed function of the hardware or software component is.
4124 4125	18.2.1	Conformance of hardware and software Components That Produce or Consume Gen 2 Memory Bank Contents
4126 4127 4128 4129		This section specifies conformance of hardware and software components that produce and consume the contents of a memory bank of a Gen 2 tag. This includes components that interact directly with tags via the Gen 2 Air Interface as well as components that manipulate a software representation of raw memory contents
4130		Definitions:
4131		Bank X Consumer (where X is a specific memory bank of a Gen 2 tag): A hardware or software

Bank X Consumer (where X is a specific memory bank of a Gen 2 tag): A hardware or software component that accepts as input via some external interface the contents of Bank X of a Gen 2 tag. This includes components that read tags via the Gen 2 Air Interface (i.e., readers), as well

4134 4135 4136		as components that manipulate a software representation of raw memory contents (e.g., "middleware" software that receives a hexadecimal-formatted image of tag memory from an interrogator as input).
4137 4138 4139 4140 4141 4142 4143	1	Bank X Producer (where X is a specific memory bank of a Gen 2 tag): A hardware or software component that outputs via some external interface the contents of Bank X of a Gen 2. This includes components that interact directly with tags via the Gen 2 Air Interface (i.e., write-capable interrogators and printers – the memory contents delivered to the tag is an output via the air interface), as well as components that manipulate a software representation of raw memory contents (e.g., software that outputs a "write" command to an interrogator, delivering a hexadecimal-formatted image of tag memory as part of the command).
4144 4145 4146 4147 4148 4149 4150 4151 4152		A hardware or software component that "passes through" the raw contents of tag memory Bank X from one external interface to another is simultaneously a Bank X Consumer and a Bank X Producer. For example, consider a reader device that accepts as input from an application via its network "wire protocol" a command to write EPC tag memory, where the command includes a hexadecimal-formatted image of the tag memory that the application wishes to write, and then writes that image to a tag via the Gen 2 Air Interface. That device is a Bank 01 Consumer with respect to its "wire protocol," and a Bank 01 Producer with respect to the Gen 2 Air Interface. The conformance requirements below insure that such a device is capable of accepting from an application and writing to a tag any EPC bank contents that is valid according to this specification.
4153 4154		The following conformance requirements apply to Bank X Consumers and Producers as defined above:
4155 4156	I	A Bank 01 (EPC bank) Consumer SHALL accept as input any memory contents that conforms to this specification, as conformance is specified in Section <u>18.1.2</u> .
4157 4158 4159	1	 If a Bank 01 Consumer interprets the contents of the EPC memory bank received as input, it SHALL do so in a manner consistent with the definitions of EPC memory bank contents in this specification.
4160 4161 4162 4163		A Bank 01 (EPC bank) Producer SHALL produce as output memory contents that conforms to this specification, as conformance is specified in Section <u>18.1.2</u> , whenever the hardware or software component produces output for Bank 01 containing an EPC. A Bank 01 Producer MAY produce output containing a non-EPC if it sets bit 17 _h to one.
4164 4165	1	 If a Bank 01 Producer constructs the contents of the EPC memory bank from component parts, it SHALL do so in a manner consistent with this.
4166 4167	1	A Bank 10 (TID Bank) Consumer SHALL accept as input any memory contents that conforms to this specification, as conformance is specified in Section <u>18.1.3</u> .
4168 4169 4170	I	 If a Bank 10 Consumer interprets the contents of the TID memory bank received as input, it SHALL do so in a manner consistent with the definitions of TID memory bank contents in this specification.
4171 4172	1	A Bank 10 (TID bank) Producer SHALL produce as output memory contents that conforms to this specification, as conformance is specified in Section <u>18.1.3</u> .
4173 4174	1	If a Bank 10 Producer constructs the contents of the TID memory bank from component parts, it SHALL do so in a manner consistent with this specification.
4175 4176	1	 Conformance for hardware or software components that read or write the User memory bank (Bank 11) SHALL be as specified in Section <u>17</u>.
4177 4178		Conformance of hardware and software Components that Produce or Consume URI Forms of the EPC
4179 4180		This section specifies conformance of hardware and software components that use URIs as specified herein as inputs or outputs.
4181		Definitions:
4182 4183	1	EPC URI Consumer: A hardware or software component that accepts an EPC URI as input via some external interface. An EPC URI Consumer may be further classified as a Pure Identity URI

4184	EPC Consumer if it accepts an EPC Pure Identity URI as an input, or an EPC Tag/Raw URI
4185	Consumer if it accepts an EPC Tag URI or EPC Raw URI as input.
4186 4187 4188 4189	EPC URI Producer: A hardware or software component that produces an EPC URI as output via some external interface. An EPC URI Producer may be further classified as a Pure Identity URI EPC Producer if it produces an EPC Pure Identity URI as an output, or an EPC Tag/Raw URI Producer if it produces an EPC Tag URI or EPC Raw URI as output.
4190 4191	A given hardware or software component may satisfy more than one of the above definitions, in which case it is subject to all of the relevant conformance tests below.
4192	The following conformance requirements apply to Pure Identity URI EPC Consumers:
4193	 A Pure Identity URI EPC Consumer SHALL accept as input any string that satisfies the grammar
4194	of Section <u>6</u> , including all constraints on the number of characters in various components.
4195	 A Pure Identity URI EPC Consumer SHALL reject as invalid any input string that begins with the
4196	characters urn:epc:id: that does not satisfy the grammar of Section <u>6</u> , including all
4197	constraints on the number of characters in various components.
4198	 If a Pure Identity URI EPC Consumer interprets the contents of a Pure Identity URI, it SHALL do
4199	so in a manner consistent with the definitions of the Pure Identity EPC URI in this specification
4200	and the specifications referenced herein (including the GS1 General Specifications).
4201	The following conformance requirements apply to Pure Identity URI EPC Producers:
4202	 A Pure Identity EPC URI Producer SHALL produce as output strings that satisfy the grammar in
4203	Section 6, including all constraints on the number of characters in various components.
4204	 A Pure Identity EPC URI Producer SHALL NOT produce as output a string that begins with the
4205	characters urn:epc:id: that does not satisfy the grammar of Section <u>6</u> , including all
4206	constraints on the number of characters in various components.
4207	 If a Pure Identity EPC URI Producer constructs a Pure Identity EPC URI from component parts, it
4208	SHALL do so in a manner consistent with this specification.
4209	The following conformance requirements apply to EPC Tag/Raw URI Consumers:
4210	 An EPC Tag/Raw URI Consumer SHALL accept as input any string that satisfies the TagURI
4211	production of the grammar of Section <u>12.4</u> , and that can be encoded according to Section 14.3
4212	without causing an exception.
4213 4214	 An EPC Tag/Raw URI Consumer MAY accept as input any string that satisfies the RawURI production of the grammar of Section <u>12.4</u>.
4215	 An EPC Tag/Raw URI Consumer SHALL reject as invalid any input string that begins with the
4216	characters urn:epc:tag: that does not satisfy the grammar of Section <u>12.4</u> , or that causes
4217	the encoding procedure of Section 14.3 to raise an exception.
4218	 An EPC Tag/Raw URI Consumer that accepts EPC Raw URIs as input SHALL reject as invalid any
4219	input string that begins with the characters urn:epc:raw: that does not satisfy the grammar
4220	of Section <u>12.4</u> .
4221	To the extent that an EPC Tag/Raw URI Consumer interprets the contents of an EPC Tag URI or
4222	EPC Raw URI, it SHALL do so in a manner consistent with the definitions of the EPC Tag URI and
4223	EPC Raw URI in this specification and the specifications referenced herein (including the GS1
4224	General Specifications).
4225	The following conformance requirements apply to EPC Tag/Raw URI Producers:
4226 4227 4228 4229	An EPC Tag/Raw URI Producer SHALL produce as output strings that satisfy the TagURI production or the RawURI production of the grammar of Section 12.4, provided that any output string that satisfies the TagURI production must be encodable according to the encoding procedure of Section 14.3 without raising an exception.
4230	• An EPC Tag/Raw URI Producer SHALL NOT produce as output a string that begins with the

4232 4233

4245

4246

4261

4262

If an EPC Tag/Raw URI Producer constructs an EPC Tag URI or EPC Raw URI from component parts, it SHALL do so in a manner consistent with this specification.

4234 18.2.3 Conformance of hardware and software components that translate between EPC 4235 Forms

4236 This section specifies conformance for hardware and software components that translate between 4237 EPC forms, such as translating an EPC binary encoding to an EPC Tag URI, an EPC Tag URI to a Pure 4238 Identity EPC URI, a Pure Identity EPC URI to an EPC Tag URI, or an EPC Tag URI to the contents of 4239 the EPC memory bank of a Gen 2 tag. Any such component by definition accepts these forms as 4240 inputs or outputs, and is therefore also subject to the relevant parts of Sections *18.2.1* and *18.2.2*.

- A hardware or software component that takes the contents of the EPC memory bank of a Gen 2
 tag as input and produces the corresponding EPC Tag URI or EPC Raw URI as output SHALL
 produce an output equivalent to applying the decoding procedure of Section <u>15.2.2</u> to the input.
 - A hardware or software component that takes the contents of the EPC memory bank of a Gen 2 tag as input and produces the corresponding EPC Tag URI or EPC Raw URI as output SHALL produce an output equivalent to applying the decoding procedure of Section <u>15.2.3</u> to the input.
- A hardware or software component that takes an EPC Tag URI as input and produces the
 corresponding Pure Identity EPC URI as output SHALL produce an output equivalent to applying
 the procedure of Section <u>12.3.3</u> to the input.
- A hardware or software component that takes an EPC Tag URI as input and produces the contents of the EPC memory bank of a Gen 2 tag as output (whether by actually writing a tag or by producing a software representation of raw memory contents as output) SHALL produce an output equivalent to applying the procedure of Section <u>15.1.1</u> to the input.

425418.3Conformance of Human Readable Forms of the EPC and of EPC Memory4255Bank contents

4256This section specifies conformance for human readable representations of an EPC. Human readable4257representations may be used on printed labels, in documents, etc. This section does not specify the4258conditions under which a human readable representation of an EPC or RFID tag contents shall or4259should be printed on any label, packaging, or other medium; it only specifies what is a conforming4260human readable representation when it is desired to include one.

- To conform to this specification, a human readable representation of an electronic product code SHALL be a Pure Identity EPC URI as specified in Section <u>6</u>.
- 4263To conform to this specification, a human readable representation of the entire contents of the
EPC memory bank of a Gen 2 tag SHALL be an EPC Tag URI or an EPC Raw URI as specified in
Section <u>12</u>. An EPC Tag URI SHOULD be used when it is possible to do so (that is, when the
memory bank contents contains a valid EPC).

4269 4270

4271

4272

4273

4274 4275

4276

4277

4278

4279

4267 A Character Set for Alphanumeric Serial Numbers

The following table specifies the characters that are permitted by the GS1 General Specifications [GS1GS] for use in alphanumeric serial numbers. The columns are as follows:

- **Graphic symbol**: The printed representation of the character as used in human-readable forms.
- Name: The common name for the character
- Hex Value: A hexadecimal numeral that gives the 7-bit binary value for the character as used in EPC binary encodings. This hexadecimal value is always equal to the ISO 646 (ASCII) code for the character.
 - URI Form: The representation of the character within Pure Identity EPC URI and EPC Tag URI forms. This is either a single character whose ASCII code is equal to the value in the "hex value" column, or an escape triplet consisting of a percent character followed by two characters giving the hexadecimal value for the character.

4280 **Table A-1** Characters Permitted in Alphanumeric Serial Numbers

Graphic symbol	Name	Hex Value	URI Form	Graphic symbol	Name	Hex Value	URI Form
!	Exclamation Mark	21	!	М	Capital Letter M	4D	М
"	Quotation Mark	22	822	N	Capital Letter N	4E	N
olo	Percent Sign	25	825	0	Capital Letter O	4F	0
&	Ampersand	26	826	Р	Capital Letter P	50	P
1	Apostrophe	27	1	Q	Capital Letter Q	51	Q
(Left Parenthesis	28	(R	Capital Letter R	52	R
)	Right Parenthesis	29)	S	Capital Letter S	53	S
*	Asterisk	2A	*	Т	Capital Letter T	54	Т
+	Plus sign	2B	+	υ	Capital Letter U	55	U
1	Comma	2C	1	V	Capital Letter V	56	V
-	Hyphen/ Minus	2D	-	W	Capital Letter W	57	W
•	Full Stop	2E	•	Х	Capital Letter X	58	Х
/	Solidus	2F	%2F	Y	Capital Letter Y	59	Y
0	Digit Zero	30	0	Ζ	Capital Letter Z	5A	Z
1	Digit One	31	1	_	Low Line	5F	_
2	Digit Two	32	2	a	Small Letter a	61	a
3	Digit Three	33	3	b	Small Letter b	62	b

Graphic symbol	Name	Hex Value	URI Form	Graphic symbol	Name	Hex Value	URI Form
4	Digit Four	34	4	С	Small Letter c	63	С
5	Digit Five	35	5	d	Small Letter d	64	d
6	Digit Six	36	6	е	Small Letter e	65	е
7	Digit Seven	37	7	f	Small Letter f	66	f
8	Digit Eight	38	8	g	Small Letter g	67	g
9	Digit Nine	39	9	h	Small Letter h	68	h
:	Colon	3A	:	i	Small Letter i	69	i
;	Semicolon	3B	;	j	Small Letter j	6A	j
<	Less-than Sign	3C	%3C	k	Small Letter k	6B	k
=	Equals Sign	3D	=	1	Small Letter I	6C	1
>	Greater-than Sign	3E	%3E	m	Small Letter m	6D	m
?	Question Mark	3F	%3F	n	Small Letter n	6E	n
A	Capital Letter A	41	A	0	Small Letter o	6F	0
В	Capital Letter B	42	В	р	Small Letter p	70	q
С	Capital Letter C	43	С	đ	Small Letter q	71	đ
D	Capital Letter D	44	D	r	Small Letter r	72	r
Е	Capital Letter E	45	E	S	Small Letter s	73	S
F	Capital Letter F	46	F	t	Small Letter t	74	t
G	Capital Letter G	47	G	u	Small Letter u	75	u
Н	Capital Letter H	48	н	v	Small Letter v	76	v
I	Capital Letter I	49	I	W	Small Letter w	77	W
J	Capital Letter J	4A	J	x	Small Letter x	78	x
К	Capital Letter K	4B	К	У	Small Letter y	79	У
L	Capital Letter L	4C	L	Z	Small Letter z	7A	Z

4281 B Glossary (non-normative)

4282

Please refer to the <u>www.gs1.org/glossary</u> for the latest version of the glossary.

Term	Defined Where	Meaning
Application Identifier (AI)	[GS1GS]	A numeric code that identifies a data element within a GS1 element string.
Attribute Bits	Section <u>11</u>	An 8-bit field of control information that is stored in the EPC Memory Bank of a Gen 2 RFID Tag when the tag contains an EPC. The Attribute Bits includes data that guides the handling of the object to which the tag is affixed, for example a bit that indicates the presence of hazardous material.
Barcode		A data carrier that holds text data in the form of light and dark markings which may be read by an optical reader device.
Control Information	Section <u>9.1</u>	Information that is used by data capture applications to help control the process of interacting with RFID Tags. Control Information includes data that helps a capturing application filter out tags from large populations to increase read efficiency, special handling information that affects the behaviour of capturing application, information that controls tag security features, and so on. Control Information is typically <i>not</i> passed directly to business applications, though Control Information may influence how a capturing application presents business data to the business application level. Unlike Business Data, Control Information has no equivalent in bar codes or other data carriers.
Data Carrier		Generic term for a marking or device that is used to physically attach data to a physical object. Examples of data carriers include Bar Codes and RFID Tags.
Electronic Product Code (EPC)	Section <u>4</u>	A universal identifier for any physical object. The EPC is designed so that every physical object of interest to information systems may be given an EPC that is globally unique and persistent through time.
		The primary representation of an EPC is in the form of a Pure Identity EPC URI $(q.v.)$, which is a unique string that may be used in information systems, electronic messages, databases, and other contexts. A secondary representation, the EPC Binary Encoding $(q.v.)$ is available for use in RFID Tags and other settings where a compact binary representation is required.
EPC	Section <u>4</u>	See Electronic Product Code
EPC Bank (of a Gen 2 RFID Tag)	[UHFC1G2]	Bank 01 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The EPC Bank holds the EPC Binary Encoding of an EPC, together with additional control information as specified in Section <u>7.9</u> .
EPC Binary Encoding	Section <u>13</u>	A compact encoding of an Electronic Product Code, together with a filter value (if the encoding scheme includes a filter value), into a binary bit string that is suitable for storage in RFID Tags, including the EPC Memory Bank of a Gen 2 RFID Tag. Owing to trade-offs between data capacity and the number of bits in the encoded value, more than one binary encoding scheme exists for certain EPC schemes.
EPC Binary Encoding Scheme	Section <u>13</u>	A particular format for the encoding of an Electronic Product Code, together with a Filter Value in some cases, into an EPC Binary Encoding. Each EPC Scheme has at least one corresponding EPC Binary Encoding Scheme. from a specified combination of data elements. Owing to trade-offs between data capacity and the number of bits in the encoded value, more than one binary encoding scheme exists for certain EPC schemes. An EPC Binary Encoding begins with an 8-bit header that identifies which binary encoding scheme is used for that binary encoding; this serves to identify how the remainder of the binary encoding is to be interpreted.
EPC Pure Identity URI	Section <u>6</u>	See Pure Identity EPC URI.
EPC Raw URI	Section <u>12</u>	A representation of the complete contents of the EPC Memory Bank of a Gen 2 RFID Tag,

Term	Defined Where	Meaning	
EPC Scheme	Section <u>6</u>	A particular format for the construction of an Electronic Product Code from a specified combination of data elements. A Pure Identity EPC URI begins with the name of the EPC Scheme used for that URI, which both serves to ensure global uniqueness of the complete URI as well as identify how the remainder of the URI is to be interpreted. Each type of GS1 key has a corresponding EPC Scheme that allows for the construction of an EPC that corresponds to the value of a GS1 key, under certain conditions. Other EPC Schemes exist that allow for construction of EPCs not related to GS1 keys.	
EPC Tag URI	Section <u>12</u>	A representation of the complete contents of the EPC Memory Bank of a Gen 2 RFID Tag, in the form of an Internet Uniform Resource Identifier that includes a decoded representation of EPC data fields, usable when the EPC Memory Bank contains a valid EPC Binary Encoding. Because the EPC Tag URI represents the complete contents of the EPC Memory Bank, it includes control information in addition to the EPC, in contrast to the Pure Identity EPC URI.	
Extended Tag Identification (XTID)	Section <u>16</u>	Information that may be included in the TID Bank of a Gen 2 RFID Tag in addition to the make and model information. The XTID may include a manufacturer-assigned unique serial number and may also include other information that describes the capabilities of the tag.	
Filter Value	Section <u>10</u>	A 3-bit field of control information that is stored in the EPC Memory Bank of a Gen 2 RFID Tag when the tag contains certain types of EPCs. The filter value makes it easier to read desired RFID Tags in an environment where there may be other tags present, such as reading a pallet tag in the presence of a large number of item-level tags.	
Gen 2 RFID Tag	Section 7.9	An RFID Tag that conforms to one of the EPCglobal Gen 2 family of air interface protocols. This includes the UHF Class 1 Gen 2 Air Interface [UHFC1G2], and other standards currently under development within EPCglobal.	
GS1 Company Prefix	[GS1GS]	Part of the GS1 System identification number consisting of a GS1 Prefix and a Company Number, both of which are allocated by GS1 Member Organisations.	
GS1 element string	[GS1GS]	The combination of a GS1 Application Identifier and GS1 Application Identifier Data Field.	
GS1 key	[GS1GS]	A generic term for identification keys defined in the GS1 General Specifications [GS1GS], namely the GTIN, SSCC, GLN, GRAI, GIAI, GSRN, GDTI, GSIN, GINC, CPID, GCN and GMN.	
Pure Identity EPC URI	Section <u>6</u>	The primary concrete representation of an Electronic Product Code. The Pure Identity EPC URI is an Internet Uniform Resource Identifier that contains an Electronic Product Code and no other information.	
Radio-Frequency Identification (RFID) Tag		A data carrier that holds binary data, which may be affixed to a physical object, and which communicates the data to a interrogator ("reader") device through radio.	
Reserved Bank (of a Gen 2 RFID Tag)	[UHFC1G2]	Bank 00 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The Reserved Bank holds the access password and the kill password.	
Tag Identification (TID)	[UHFC1G2]	Information that describes a Gen 2 RFID Tag itself, as opposed to describing the physical object to which the tag is affixed. The TID includes an indication of the make and model of the tag, and may also include Extended TID (XTID) information.	
TID Bank (of a Gen 2 RFID Tag)	[UHFC1G2]	Bank 10 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The TID Bank holds the TID and XTID $(q.v.)$.	
Uniform Resource Identifier (URI)	[RFC3986]	A compact sequence of characters that identifies an abstract or physical resource. A URI may be further classified as a Uniform Resource Name (URN) or a Uniform Resource Locator (URL), $q.v.$	
Uniform Resource Locator (URL)	[RFC3986]	A Uniform Resource Identifier (URI) that, in addition to identifying a resource, provides a means of locating the resource by describing its primary access mechanism (e.g., its network "location").	

Term	Defined Where	Meaning
Uniform Resource Name (URN)	[RFC3986], [RFC2141]	A Uniform Resource Identifier (URI) that is part of the urn scheme as specified by [RFC2141]. Such URIs refer to a specific resource independent of its network location or other method of access, or which may not have a network location at all. The term URN may also refer to any other URI having similar properties.
		Because an Electronic Product Code is a unique identifier for a physical object that does not necessarily have a network location or other method of access, URNs are used to represent EPCs.
User Memory Bank (of a Gen 2 RFID Tag)	[UHFC1G2]	Bank 11 of a Gen 2 RFID Tag as specified in [UHFC1G2]. The User Memory may be used to hold additional business data elements beyond the EPC.

4283 C References

- 4284 [ASN.1] CCITT, "Specification of Basic Encoding Rules for Abstract Syntax Notation One (ASN.1)", 4285 CCITT Recommendation X.209, January 1988.
- 4286 [EPCAF] F. Armenio et al, "EPCglobal Architecture Framework," Version 1.7, May 2015, 4287 https://www.gs1.org/id-keys-epcrfid-epcis/epc-rfid-architecture-framework/1-6
- 4288 [GS1GS19.1] "GS1 General Specifications,- Version 19.1" July 2019, Published by GS1, Blue Tower, 4289 Avenue Louise 326, bte10, Brussels 1009, B-1050, Belgium, <u>www.gs1.org</u>.
- 4290[ISO15961] ISO/IEC, "Information technology Radio frequency identification (RFID) for item4291management Data protocol: application interface," ISO/IEC 15961:2004, October 2004.
- 4292[ISO15962] ISO/IEC, "Information technology Radio frequency identification (RFID) for item4293management Data protocol: data encoding rules and logical memory functions," ISO/IEC429415962:2004, October 2004. (When ISO/IEC 15962, 2nd Edition, is published, it should be used in4295preference to the earlier version. References herein to Annex D of [15962] refer only to ISO/IEC429615962, 2nd Edition or later.)
- 4297 [ISODir2] ISO, "Rules for the structure and drafting of International Standards (ISO/IEC Directives,
 4298 Part 2, 2001, 4th edition)," July 2002.
- 4299 [RFC2141] R. Moats, "URN Syntax," RFC2141, May 1997, http://www.ietf.org/rfc/rfc2141.
- 4300 [RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifier (URI): Generic
 4301 Syntax," RFC3986, January 2005, <u>http://www.ietf.org/rfc/rfc3986</u>.
- 4302[ONS1.0.1] EPCglobal, "EPCglobal Object Naming Service (ONS), Version 1.0.1," EPCglobal Ratified4303Standard, May 2008, http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-430420080529.pdf.
- 4305[SPEC2000] Air Transport Association, "Spec 2000 E-Business Specification for Materials4306Management," May 2009, http://www.spec2000.com.
- 4307[UHFC1G2] EPCglobal, "EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID4308Protocol for Communications at 860 MHz 960 MHz Version 1.2.0," EPCglobal Specification, May43092008, <u>http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf</u>.
- 4310[UID] "United States Department of Defense Guide to Uniquely Identifying Items" v2.0 (1st October43112008), http://www.acq.osd.mil/dpap/UID/attachments/DoDUIDGuide.pdf
- 4312 [USDOD] "United States Department of Defense Suppliers' Passive RFID Information Guide,"
 4313 http://www.dodrfid.org/supplierguide.htm

4314 **D Extensible Bit Vectors**

4315 An Extensible Bit Vector (EBV) is a data structure with an extensible data range.

4316An EBV is an array of blocks. Each block contains a single extension bit followed by a specific4317number of data bits. If B is the total number of bits in one block, then a block contains B - 1 data4318bits. The notation EBV-*n* used in this specification indicates an EBV with a block size of *n*; e.g., EBV-43198 denotes an EBV with B=8.

- 4320 The data value represented by an EBV is simply the bit string formed by the data bits as read from 4321 left to right, ignoring all extension bits. The last block of an EBV has an extension bit of zero, and all 4322 blocks of an EBV preceding the last block (if any) have an extension bit of one.
- 4323 The following table illustrates different values represented in EBV-6 format and EBV-8 format. 4324 Spaces are added to the EBVs for visual clarity.

Value	EBV-6	EBV-8
0	000000	0000000
1	000001	00000001
31 (2 ⁵ -1)	011111	00011111
32 (2 ⁵)	100001 000000	00100000
33 (2 ⁵ +1)	100001 000001	00100001
127 (27-1)	100011 011111	0111111
128 (2 ⁷)	100100 000000	10000001 00000000
129 (2 ⁷ +1)	100100 000001	10000001 00000001
16384 (2 ¹⁴)	110000 100000 000000	10000001 10000000 00000000

4325

The Packed Objects specification in <u>I</u> makes use of EBV-3, EBV-6, and EBV-8.

4345

4346 4347

4348

4349

4350

4351

4352

4353

4354

4355

4356

4357

4358

4359

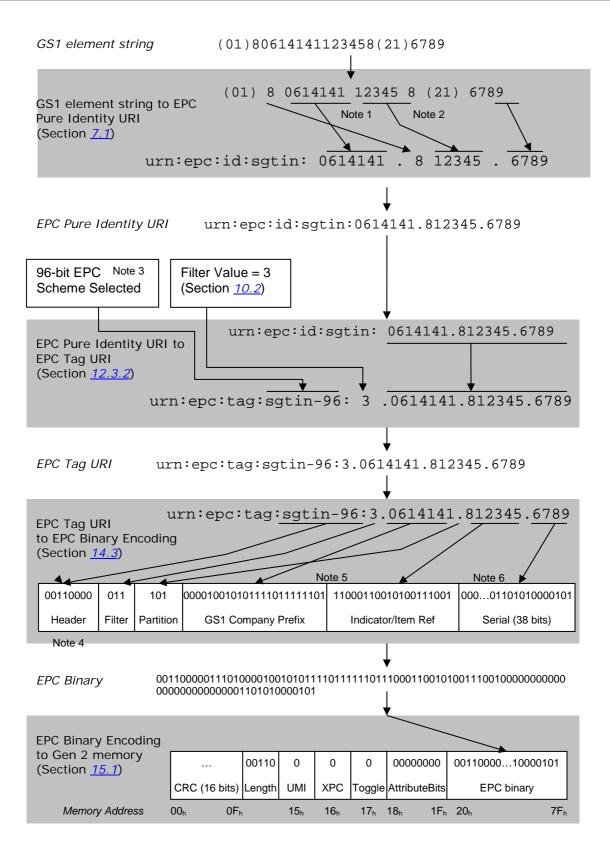
4360

4361

4362 4363

4326 E (non-normative) Examples: EPC encoding and decoding

4327This section presents two detailed examples showing encoding and decoding between the Serialised4328Global Identification Number (SGTIN) and the EPC memory bank of a Gen 2 RFID tag, and summary4329examples showing various encodings of all EPC schemes.


4330As these are merely illustrative examples, in all cases the indicated normative sections of this4331specification should be consulted for the definitive rules for encoding and decoding. The diagrams4332and accompanying notes in this section are not intended to be a complete specification for encoding4333or decoding, but instead serve only to illustrate the highlights of how the normative encoding and4334decoding procedures function. The procedures for encoding other types of identifiers are different in4335significant ways, and the appropriate sections of this specification should be consulted.

4336 E.1 Encoding a Serialised Global Trade Item Number (SGTIN) to SGTIN-96

- 4337This example illustrates the encoding of a GS1 element string containing a Serialised Global Trade4338Item Number (SGTIN) into an EPC Gen 2 RFID tag using the SGTIN-96 EPC scheme, with4339intermediate steps including the EPC URI, the EPC Tag URI, and the EPC Binary Encoding.
- 4340In some applications, only a part of this illustration is relevant. For example, an application may4341only need to transform a GS1 element string into an EPC URI, in which case only the top of the4342illustration is needed.
- 4343 The illustration below makes reference to the following notes:
 - Note 1: The step of converting a GS1 element string into the EPC Pure Identity URI requires that the number of digits in the GS1 Company Prefix be determined; e.g., by reference to an external table of company prefixes. In this example, the GS1 Company Prefix is shown to be seven digits.
 - Note 2: The check digit in GTIN as it appears in the GS1 element string is not included in the EPC Pure Identity URI.
 - Note 3: The SGTIN-96 EPC scheme may only be used if the Serial Number meets certain constraints. Specifically, the serial number must (a) consist only of digit characters; (b) not begin with a zero digit (unless the entire serial number is the single digit '0'); and (c) correspond to a decimal numeral whose numeric value that is less than 2³⁸ (less than 274,877,906,944). For all other serial numbers, the SGTIN-198 EPC scheme must be used. Note that the EPC URI is identical regardless of whether SGTIN-96 or SGTIN-198 is used in the RFID Tag.
 - **Note 4**: EPC Binary Encoding header values are defined in Section <u>14.2</u>.
 - Note 5: The number of bits in the GS1 Company Prefix and Indicator/Item Reference fields in the EPC Binary Encoding depends on the number of digits in the GS1 Company Prefix portion of the EPC URI, and this is indicated by a code in the Partition field of the EPC Binary Encoding. See <u>14.2</u>. (for the SGTIN EPC only).
 - Note 6: The Serial field of the EPC Binary Encoding for SGTIN-96 is 38 bits; not all bits are shown here due to space limitations.

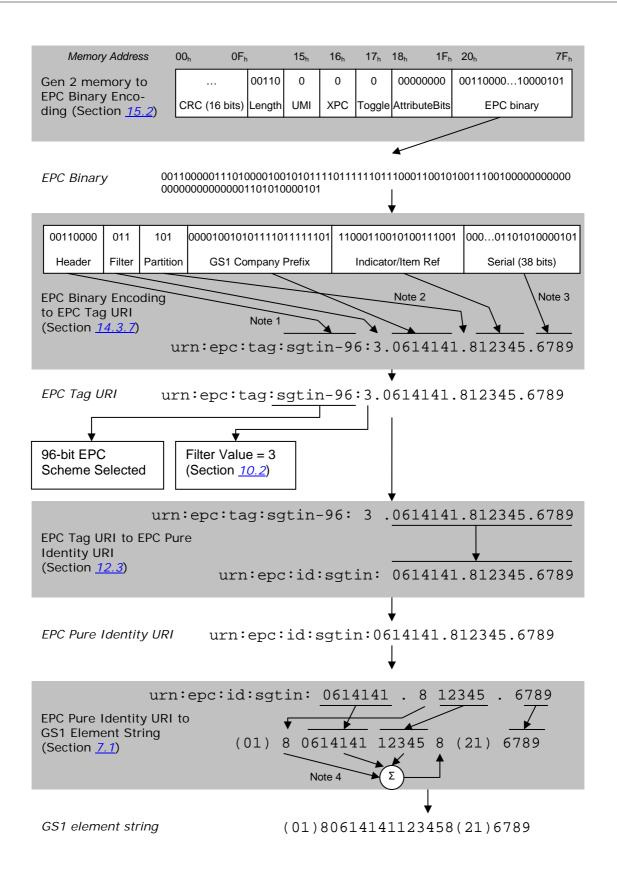
4367

4368

4376

4377

4378 4379


4380

4365 E.2 Decoding an SGTIN-96 to a Serialised Global Trade Item Number (SGTIN)

This example illustrates the decoding of an EPC Gen 2 RFID tag containing an SGTIN-96 EPC Binary Encoding into a GS1 element string containing a Serialised Global Trade Item Number (SGTIN), with intermediate steps including the EPC Binary Encoding, the EPC Tag URI, and the EPC URI.

- In some applications, only a part of this illustration is relevant. For example, an application may
 only need to convert an EPC binary encoding to an EPC URI, in which case only the top of the
 illustration is needed.
- 4372 The illustration below makes reference to the following notes:
- 4373
 Note 1: The EPC Binary Encoding header indicates how to interpret the remainder of the binary data, and the EPC scheme name to be included in the EPC Tag URI. EPC Binary Encoding header values are defined in Section <u>14.2</u>.
 - Note 2: The Partition field of the EPC Binary Encoding contains a code that indicates the number of bits in the GS1 Company Prefix field and the Indicator/Item Reference field. The partition code also determines the number of decimal digits to be used for those fields in the EPC Tag URI (the decimal representation for those two fields is padded on the left with zero characters as necessary). See Section <u>14.2</u>. (for the SGTIN EPC only).
- 4381
 Note 3: For the SGTIN-96 EPC scheme, the Serial Number field is decoded by interpreting the bits as a binary integer and converting to a decimal numeral without leading zeros (unless all serial number bits are zero, which decodes as the string "0"). Serial numbers containing non-digit characters or that begin with leading zero characters may only be encoded in the SGTIN-198 EPC scheme.
- 4386
 Note 4: The check digit in the GS1 element string is calculated from other digits in the EPC Pure Identity URI, as specified in Section <u>7.1</u>.

4390 E.3 Summary Examples of All EPC schemes

4391

In all examples below, GS1 Company Prefix 0614141 is presumed to be seven digits long.

SGTIN-96	
GS1 element string	(01) 80614141123458 (21) 6789
EPC URI	urn:epc:id:sgtin:0614141.812345.6789
EPC Tag URI	urn:epc:tag:sgtin-96:3.0614141.812345.6789
EPC Binary Encoding (hex)	3074257BF7194E4000001A85

4392

SGTIN-198	
GS1 element string	(01) 70614141123451 (21) 32a/b
EPC URI	urn:epc:id:sgtin:0614141.712345.32a%2Fb
EPC Tag URI	urn:epc:tag:sgtin-198:3.0614141.712345.32a%2Fb
EPC Binary Encoding (hex)	3674257BF6B7A659B2C2BF1000000000000000000000000000000000000

4393

SSCC-96	
GS1 element string	(00) 106141412345678908
EPC URI	urn:epc:id:sscc:0614141.1234567890
EPC Tag URI	urn:epc:tag:sscc-96:3.0614141.1234567890
EPC Binary Encoding (hex)	3174257BF4499602D2000000

4394

SGLN-96	
GS1 element string	(414) 0614141123452 (254) 5678
EPC URI	urn:epc:id:sgln:0614141.12345.5678
EPC Tag URI	urn:epc:tag:sgln-96:3.0614141.12345.5678
EPC Binary Encoding (hex)	3274257BF4607200000162E

4395

SGLN-195	
GS1 element string	(414) 0614141123452 (254) 32a/b
EPC URI	urn:epc:id:sgln:0614141.12345.32a%2Fb
EPC Tag URI	urn:epc:tag:sgln-195:3.0614141.12345.32a%2Fb
EPC Binary Encoding (hex)	3974257BF46072CD9615F8800000000000000000000000000000000000

4396

GRAI-96	
GS1 element string	(8003) 006141411234525678
EPC URI	urn:epc:id:grai:0614141.12345.5678
EPC Tag URI	urn:epc:tag:grai-96:3.0614141.12345.5678
EPC Binary Encoding (hex)	3374257BF40C0E400000162E

GRAI-170	
GS1 element string	(8003) 0061414112345232a/b

GRAI-170	
EPC URI	urn:epc:id:grai:0614141.12345.32a%2Fb
EPC Tag URI	urn:epc:tag:grai-170:3.0614141.12345.32a%2Fb
EPC Binary Encoding (hex)	3774257BF40C0E59B2C2BF100000000000000000000

GIAI-96	
GS1 element string	(8004) 06141415678
EPC URI	urn:epc:id:giai:0614141.5678
EPC Tag URI	urn:epc:tag:giai-96:3.0614141.5678
EPC Binary Encoding (hex)	3474257BF400000000162E

GIAI-202	
GS1 element string	(8004) 061414132a/b
EPC URI	urn:epc:id:giai:0614141.32a%2Fb
EPC Tag URI	urn:epc:tag:giai-202:3.0614141.32a%2Fb
EPC Binary Encoding (hex)	3874257BF59B2C2BF1000000000000000000000000000000000000

GSRN-96	
GS1 element string	(8018) 061414112345678902
EPC URI	urn:epc:id:gsrn:0614141.1234567890
EPC Tag URI	urn:epc:tag:gsrn-96:3.0614141.1234567890
EPC Binary Encoding (hex)	2D74257BF4499602D2000000

GSRNP-96	
GS1 element string	(8017) 061414112345678902
EPC URI	urn:epc:id:gsrnp:0614141.1234567890
EPC Tag URI	urn:epc:tag:gsrnp-96:3.0614141.1234567890
EPC Binary Encoding (hex)	2E74257BF4499602D2000000

GDTI-96	
GS1 element string	(253) 06141411234525678
EPC URI	urn:epc:id:gdti:0614141.12345.5678
EPC Tag URI	urn:epc:tag:gdti-96:3.0614141.12345.5678
EPC Binary Encoding (hex)	2C74257BF4607200000162E

GDTI-174	
GS1 element string	(253) 4012345987652ABCDefgh012345678
EPC URI	urn:epc:id:gdti:4012345.98765.ABCDefgh012345678
EPC Tag URI	urn:epc:tag:gdti- 174:3.4012345.98765.ABCDefgh012345678
EPC Binary Encoding (hex)	3E74F4E4E7039B061438997367D0C18B266D1AB66EE0

С
G

CPI-96	
GS1 element string	(8010) 061414198765 (8011) 12345
EPC URI	urn:epc:id:cpi:0614141.98765.12345
EPC Tag URI	urn:epc:tag:cpi-96:3.0614141.98765.12345
EPC Binary Encoding (hex)	3C74257BF400C0E680003039

CPI-var	
GS1 element string	(8010) 06141415PQ7/Z43 (8011) 12345
EPC URI	urn:epc:id:cpi:0614141.5PQ7%2FZ43.12345
EPC Tag URI	urn:epc:tag:cpi-var:3.0614141.5PQ7%2FZ43.12345
EPC Binary Encoding (hex)	3D74257BF75411DEF6B4CC0000003039

SGCN-96	
GS1 element string	(255) 401234567890104711
EPC URI	urn:epc:id:sgcn:4012345.67890.04711
EPC Tag URI	urn:epc:tag:sgcn-96:3.4012345.67890.04711
EPC Binary Encoding (hex)	3F74F4E4E612640000019907

GID-96	
EPC URI	urn:epc:id:gid:31415.271828.1414
EPC Tag URI	urn:epc:tag:gid-96:31415.271828.1414
EPC Binary Encoding (hex)	350007AB70425D4000000586

USDOD-96	
EPC URI	urn:epc:id:usdod:CAGEY.5678
EPC Tag URI	urn:epc:tag:usdod-96:3.CAGEY.5678
EPC Binary Encoding (hex)	2F320434147455900000162E

ADI-var	
EPC URI	urn:epc:id:adi:35962.PQ7VZ4.M37GXB92
EPC Tag URI	urn:epc:tag:adi-var:3.35962.PQ7VZ4.M37GXB92
EPC Binary Encoding (hex)	3B0E0CF5E76C9047759AD00373DC7602E7200

ITIP-110	
GS1 element string	(8006) 040123451234560102 (21) 981
EPC URI	urn:epc:id:itip:4012345.012345.01.02.981
EPC Tag URI	urn:epc:tag:itip-110:0.4012345.012345.01.02.981
EPC Binary Encoding (hex)	4014F4E4E40C0E4082000000F54

ITIP-212	
GS1 element string	(8006) 040123451234560102 (21) mw133

ITIP-212	
EPC URI	urn:epc:id:itip:4012345.012345.01.02.mw133
EPC Tag URI	urn:epc:tag:itip-212:0.4012345.012345.01.02.mw133
EPC Binary Encoding (hex)	4114F4E4E40C0E4082DBDD8B36600000000000000000000000000000000000

4413 F Packed objects ID Table for Data Format 9

- 4414This section provides the Packed Objects ID Table for Data Format 9, which defines Packed Objects4415ID values, OIDs, and format strings for GS1 Application Identifiers.
- 4416Section *E.1* is a non-normative listing of the content of the ID Table for Data Format 9, in a human4417readable, tabular format. Section *F.2* is the normative table, in machine readable, comma-4418separated-value format, as registered with ISO.

4419 F.1 Tabular Format (non-normative)

4420This section is a non-normative listing of the content of the ID Table for Data Format 9, in a human4421readable, tabular format. See Section <u>F.2</u> for the normative, machine readable, comma-separated-4422value format, as registered with ISO.

K-Text = 0	GS1 AI ID ⁻	Table for ISO	/IEC 15961 Forn	nat 9		
K-Version	= 1.00					
K-ISO154	34=05					
K-Text = I	Primary Ba	se Table				
K-TableID	= F9B0					
K-RootOIE	D = urn:oid	:1.0.15961.9	1			
K-IDsize =	= 90					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
00	1	0	00	SSCC (Serial Shipping Container Code)	SSCC	18n
01	2	1	01	Global Trade Item Number	GTIN	14n
02 + 37	3	(2)(37)	(02)(37)	GTIN + Count of trade items contained in a logistic unit	CONTENT + COUNT	(14n)(1*8n)
10	4	10	10	Batch or lot number	BATCH/LOT	1*20an
11	5	11	11	Production date (YYMMDD)	PROD DATE	6n
12	6	12	12	Due date (YYMMDD)	DUE DATE	6n
13	7	13	13	Packaging date (YYMMDD)	PACK DATE	6n
15	8	15	15	Best before date (YYMMDD)	BEST BEFORE OR SELL BY	6n
17	9	17	17	Expiration date (YYMMDD)	USE BY OR EXPIRY	6n
20	10	20	20	Internal product variant	VARIANT	2n
21	11	21	21	Serial number	SERIAL	1*20an
22	12	22	22	Consumer product variant	CPV	1*20an
240	13	240	240	Additional product identification assigned by the manufacturer	ADDITIONAL ID	1*30an
241	14	241	241	Customer part number	CUST. PART NO.	1*30an
242	15	242	242	Made-to-Order Variation Number	VARIATION NUMBER	1*6n
250	16	250	250	Secondary serial number	SECONDARY SERIAL	1*30an

K-Text = C	GS1 AI ID	Table for ISO/II	EC 15961 Forma	at 9		
251	17	251	251	Reference to source entity	REF. TO SOURCE	1*30an
253	18	253	253	Global Document Type Identifier	DOC. ID	13n 0*17an
30	19	30	30	Variable count of items (Variable Measure Trade Item)	VAR. COUNT	1*8n
310n 320n etc	20	K- Secondary = S00		Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)		
311n 321n etc	21	K- Secondary = S01		Length of first dimension (Variable Measure Trade Item)		
312n 324n etc	22	K- Secondary = S02		Width, diameter, or second dimension (Variable Measure Trade Item)		
313n 327n etc	23	K- Secondary = S03		Depth, thickness, height, or third dimension (Variable Measure Trade Item)		
314n 350n etc	24	K- Secondary = S04		Area (Variable Measure Trade Item)		
315n 316n etc	25	K- Secondary = S05		Net volume (Variable Measure Trade Item)		
330n or 340n	26	330%x30- 36 / 340%x30- 36	330%x30- 36 / 340%x30- 36	Logistic weight, kilograms or pounds	GROSS WEIGHT (kg) or (lb)	6n / 6n
331n, 341n, etc	27	K- Secondary = S09		Length or first dimension		
332n, 344n, etc	28	K- Secondary = S10		Width, diameter, or second dimension		
333n, 347n, etc	29	K- Secondary = S11		Depth, thickness, height, or third dimension		
334n 353n etc	30	K- Secondary = S07		Logistic Area		
335n 336n etc	31	K- Secondary = S06	335%x30- 36	Logistic volume		
337(***)	32	337%x30- 36	337%x30- 36	Kilograms per square metre	KG PER m ²	6n
390n or 391n	33	390%x30- 39 / 391%x30- 39	390%x30- 39 / 391%x30- 39	Amount payable – single monetary area or with ISO currency code	AMOUNT	1*15n / 4*18n

K-Text =	GS1 AI ID	Table for ISO/II	EC 15961 Forma	at 9		
392n or 393n	34	392%x30- 39 / 393%x30- 39	392%x30- 39 / 393%x30- 39	Amount payable for Variable Measure Trade Item – single monetary unit or ISO cc	PRICE	1*15n / 4*18n
400	35	400	400	Customer's purchase order number	ORDER NUMBER	1*30an
401	36	401	401	Global Identification Number for Consignment	GINC	1*30an
402	37	402	402	Global Shipment Identification Number	GSIN	17n
403	38	403	403	Routing code	ROUTE	1*30an
410	39	410	410	Ship to - deliver to Global Location Number	SHIP TO LOC	13n
411	40	411	411	Bill to - invoice to Global Location Number	BILL TO	13n
412	41	412	412	Purchased from Global Location Number	PURCHASE FROM	13n
413	42	413	413	Ship for - deliver for - forward to Global Location Number	SHIP FOR LOC	13n
414 and 254	43	(414) [254]	(414) [254]	Identification of a physical location GLN, and optional Extension	LOC No + GLN EXTENSION	(13n) [1*20an]
415 and 8020	44	(415) (8020)	(415) (8020)	Global Location Number of the Invoicing Party and Payment Slip Reference Number	PAY + REF No	(13n) (1*25an)
420 or 421	45	(420/421)	(420/421)	Ship to - deliver to postal code	SHIP TO POST	(1*20an / 3n 1*9an)
422	46	422	422	Country of origin of a trade item	ORIGIN	3n
423	47	423	423	Country of initial processing	COUNTRY - INITIAL PROCESS.	3*15n
424	48	424	424	Country of processing	COUNTRY - PROCESS.	3n
425	49	425	425	Country of disassembly	COUNTRY - DISASSEMBLY	3n
426	50	426	426	Country covering full process chain	COUNTRY – FULL PROCESS	3n
7001	51	7001	7001	NATO stock number	NSN	13n
7002	52	7002	7002	UN/ECE meat carcasses and cuts classification	MEAT CUT	1*30an
7003	53	7003	7003	Expiration Date and Time	EXPIRY DATE/TIME	10n
7004	54	7004	7004	Active Potency	ACTIVE POTENCY	1*4n
703s	55	7030	7030	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	56	7031	7031	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an

K-Text = 0	GS1 AI ID	Table for ISO/I	EC 15961 Form	nat 9		
703s	57	7032	7032	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	58	7033	7033	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	59	7034	7034	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	60	7035	7035	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	61	7036	7036	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	62	7037	7037	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	63	7038	7038	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
703s	64	7039	7039	Approval number of processor with ISO country code	PROCESSOR # s	3n 1*27an
8001	65	8001	8001	Roll products - width, length, core diameter, direction, and splices	DIMENSIONS	14n
8002	66	8002	8002	Electronic serial identifier for cellular mobile telephones	CMT No	1*20an
8003	67	8003	8003	Global Returnable Asset Identifier	GRAI	14n 0*16an
8004	68	8004	8004	Global Individual Asset Identifier	GIAI	1*30an
8005	69	8005	8005	Price per unit of measure	PRICE PER UNIT	6n
8006	70	8006	8006	Identification of the component of a trade item	ITIP	18n
8007	71	8007	8007	International Bank Account Number	IBAN	1*34an
8008	72	8008	8008	Date and time of production	PROD TIME	8*12n
8018	73	8018	8018	Global Service Relation Number – Recipient	GSRN - RECIPIENT	18n
8100 8101 etc	74	K- Secondary = S08		Coupon Codes		
90	75	90	90	Information mutually agreed between trading partners (including FACT DIs)	INTERNAL	1*30an
91	76	91	91	Company internal information	INTERNAL	1*an

K-Text	= GS1 AI II	D Table for ISO/I	EC 15961 F	ormat 9		
92	77	92	92	Company internal information	INTERNAL	1*an
93	78	93	93	Company internal information	INTERNAL	1*an
94	79	94	94	Company internal information	INTERNAL	1*an
95	80	95	95	Company internal information	INTERNAL	1*an
96	81	96	96	Company internal information	INTERNAL	1*an
97	82	97	97	Company internal information	INTERNAL	1*an
98	83	98	98	Company internal information	INTERNAL	1*an
99	84	99	99	Company internal information	INTERNAL	1*an
nnn	85	K- Secondary = S12		Additional AIs		
K-Table	End = F9B0	0	1	•		

K-Text = Sec. IDT -	Net weight,	kilograms or	pounds or troy	oz (Variable Measure Trade Item)

K-TableID	= F9S00					
K-RootOID	= urn:oid	:1.0.15961.9				
K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
310(***)	0	310%x30- 36	310%x30- 36	Net weight, kilograms (Variable Measure Trade Item)	NET WEIGHT (kg)	6n
320(***)	1	320%x30- 36	320%x30- 36	Net weight, pounds (Variable Measure Trade Item)	NET WEIGHT (Ib)	6n
356(***)	2	356%x30- 36	356%x30- 36	Net weight, troy ounces (Variable Measure Trade Item)	NET WEIGHT (t)	6n
K-TableEnd	d = F9S00	1	L.	1	L	•

K-Text = S	Sec. IDT - I	_ength of first d	limension (Varia	able Measure Trade Item)		
K-TableID	= F9S01					
K-RootOID	= urn:oid	:1.0.15961.9				
K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
311(***)	0	311%x30- 36	311%x30- 36	Length of first dimension, metres (Variable Measure Trade Item)	LENGTH (m)	6n
321(***)	1	321%x30- 36	321%x30- 36	Length or first dimension, inches (Variable Measure Trade Item)	LENGTH (i)	ón

K-Text = S	Sec. IDT - I	Length of first d	imension (Varia	ble Measure Trade Item)		
322(***)	2	322%x30- 36	322%x30- 36	Length or first dimension, feet (Variable Measure Trade Item)	LENGTH (f)	6n
323(***)	3	323%x30- 36	323%x30- 36	Length or first dimension, yards (Variable Measure Trade Item)	LENGTH (y)	6n
K-TableEnd	d = F9S01	I			•	

4426

K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)

K-TableID = F9S02	
-------------------	--

K-RootOID = urn:oid:1.0.15961.9

K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
312(***)	0	312%x30- 36	312%x30- 36	Width, diameter, or second dimension, metres (Variable Measure Trade Item)	WIDTH (m)	6n
324(***)	1	324%x30- 36	324%x30- 36	Width, diameter, or second dimension, inches (Variable Measure Trade Item)	WIDTH (i)	6n
325(***)	2	325%x30- 36	325%x30- 36	Width, diameter, or second dimension, (Variable Measure Trade Item)	WIDTH (f)	6n
326(***)	3	326%x30- 36	326%x30- 36	Width, diameter, or second dimension, yards (Variable Measure Trade Item)	WIDTH (y)	6n

K-TableEnd = F9S02

K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item) K-TableID = F9S03 K-RootOID = urn:oid:1.0.15961.9 K-IDsize = 4AI or AIs IDvalue OIDs IDstring Name Data Title FormatString 313(***) 313%x30-0 313%x30-Depth, thickness, HEIGHT (m) 6n 36 36 height, or third dimension, metres (Variable Measure Trade Item) 327(***) 327%x30-327%x30-Depth, thickness, HEIGHT (i) 1 6n height, or third 36 36 dimension, inches (Variable Measure Trade Item) 328(***) 2 328%x30-328%x30-Depth, thickness, HEIGHT (f) 6n height, or third 36 36 dimension, feet (Variable Measure Trade Item)

K-Text = S	ec. IDT - I	Depth, thicknes	s, height, or thii	rd dimension (Variable Mea	sure Trade Item)	
329(***)	3	329%x30- 36	329%x30- 36	Depth, thickness, height, or third dimension, yards (Variable Measure Trade Item)	HEIGHT (y)	6n
K-TableEnd	d = F9S03					

K-Text = Sec. IDT - Area (Variable Measure Trade Item)

K-TableID = F9S04
K-RootOID = urn:oid:1.0.15961.9

K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
314(***)	0	314%x30- 36	314%x30- 36	Area, square metres (Variable Measure Trade Item)	AREA (m2)	6n
350(***)	1	350%x30- 36	350%x30- 36	Area, square inches (Variable Measure Trade Item)	AREA (i2)	6n
351(***)	2	351%x30- 36	351%x30- 36	Area, square feet (Variable Measure Trade Item)	AREA (f2)	6n
352(***)	3	352%x30- 36	352%x30- 36	Area, square yards (Variable Measure Trade Item)	AREA (y2)	6n

K-TableID	= F9S05					
K-RootOID) = urn:oid	:1.0.15961.9				
K-IDsize =	8					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
315(***)	0	315%x30- 36	315%x30- 36	Net volume, litres (Variable Measure Trade Item)	NET VOLUME (I)	6n
316(***)	1	316%x30- 36	316%x30- 36	Net volume, cubic metres (Variable Measure Trade Item)	NET VOLUME (m3)	6n
357(***)	2	357%x30- 36	357%x30- 36	Net weight (or volume), ounces (Variable Measure Trade Item)	NET VOLUME (oz)	6n
360(***)	3	360%x30- 36	360%x30- 36	Net volume, quarts (Variable Measure Trade Item)	NET VOLUME (q)	6n
361(***)	4	361%x30- 36	361%x30- 36	Net volume, gallons U.S. (Variable Measure Trade Item)	NET VOLUME (g)	6n
364(***)	5	364%x30- 36	364%x30- 36	Net volume, cubic inches	VOLUME (i3), log	6n
365(***)	6	365%x30- 36	365%x30- 36	Net volume, cubic feet (Variable Measure Trade Item)	VOLUME (f3), log	6n

K-Text = S	Sec. IDT - I	Net volume (Var	riable Measure 1	Trade Item)		
366(***)	7	366%x30- 36	366%x30- 36	Net volume, cubic yards (Variable Measure Trade Item)	VOLUME (y3), log	6n
K-TableEnd	d = F9S05					

-Text = Sec. IDT -	Logistic Volume
--------------------	-----------------

K-TableID = F9S06

K-RootOID = urn:oid:1.0.15961.9

K-IDsize =	8					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
335(***)	0	335%x30- 36	335%x30- 36	Logistic volume, litres	VOLUME (I), log	6n
336(***)	1	336%x30- 36	336%x30- 36	Logistic volume, cubic meters	VOLUME (m3), log	6n
362(***)	2	362%x30- 36	362%x30- 36	Logistic volume, quarts	VOLUME (q), log	6n
363(***)	3	363%x30- 36	363%x30- 36	Logistic volume, gallons	VOLUME (g), log	6n
367(***)	4	367%x30- 36	367%x30- 36	Logistic volume, cubic inches	VOLUME (q), log	6n
368(***)	5	368%x30- 36	368%x30- 36	Logistic volume, cubic feet	VOLUME (g), log	6n
369(***)	6	369%x30- 36	369%x30- 36	Logistic volume, cubic yards	VOLUME (i3), log	6n
K-TableEnd	d = F9S06	1	•		•	

4430

K-Text = Sec. IDT - Logistic Area

K-TableID = F9S07

K-RootOID = urn:oid:1.0.15961.9

K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
334(***)	0	334%x30- 36	334%x30- 36	Area, square metres	AREA (m2), log	6n
353(***)	1	353%x30- 36	353%x30- 36	Area, square inches	AREA (i2), log	6n
354(***)	2	354%x30- 36	354%x30- 36	Area, square feet	AREA (f2), log	6n
355(***)	3	355%x30- 36	355%x30- 36	Area, square yards	AREA (y2), log	6n
K-TableEnd	d = F9S07	•		•		

K-Text =	K-Text = Sec. IDT - Coupon Codes									
K-Tablel	K-TableID = F9S08									
K-RootO	ID = urn:c	oid:1.0.15961.9								
K-IDsize	= 8									
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString				

K-Text	= Sec. IDT	- Coupon Code	S			
8100	0	8100	8100	GS1-128 Coupon Extended Code - NSC + Offer Code	-	6n
8101	1	8101	8101	GS1-128 Coupon Extended Code - NSC + Offer Code + end of offer code	-	10n
8102	2	8102	8102	GS1-128 Coupon Extended Code – NSC ** DEPRECATED as of GS15i2 **	-	2n
8110	3	8110	8110	Coupon Code Identification for Use in North America		1*70an
8111	4	8111	8111	Loyalty points of a coupon	POINTS	4n
K-Table	End = $F9S$	08	1	1	I	1

K-Text = Sec. IDT - Length or first dimension

K-TableID	= F9S09					
K-RootOID	= urn:oid	:1.0.15961.9				
K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
331(***)	0	331%x30- 36	331%x30- 36	Length or first dimension, metres	LENGTH (m), log	6n
341(***)	1	341%x30- 36	341%x30- 36	Length or first dimension, inches	LENGTH (i), log	6n
342(***)	2	342%x30- 36	342%x30- 36	Length or first dimension, feet	LENGTH (f), log	6n
343(***)	3	343%x30- 36	343%x30- 36	Length or first dimension, yards	LENGTH (y), log	6n
K-TableEnd	d = F9S09	•	•	-		

4433

K-TableID	- F9S10					
K-RootOID) = urn:oid	:1.0.15961.9				
K-IDsize =	4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
332(***)	0	332%x30- 36	332%x30- 36	Width, diameter, or second dimension, metres	WIDTH (m), log	6n
344(***)	1	344%x30- 36	344%x30- 36	Width, diameter, or second dimension	WIDTH (i), log	6n
345(***)	2	345%x30- 36	345%x30- 36	Width, diameter, or second dimension	WIDTH (f), log	6n
346(***)	3	346%x30- 36	346%x30- 36	Width, diameter, or second dimension	WIDTH (y), log	6n

K-Text = Sec. IDT - Depth, thickness, height, or third dimension

K-TableID = F9S11

K-RootOID = urn:oid:1.0.15961.9

K-RootOID	= urn:old	:1.0.15961.9				
K-IDsize =	- 4					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
333(***)	0	333%x30- 36	333%x30- 36	Depth, thickness, height, or third dimension, metres	HEIGHT (m), log	6n
347(***)	1	347%x30- 36	347%x30- 36	Depth, thickness, height, or third dimension	HEIGHT (i), log	6n
348(***)	2	348%x30- 36	348%x30- 36	Depth, thickness, height, or third dimension	HEIGHT (f), log	6n
349(***)	3	349%x30- 36	349%x30- 36	Depth, thickness, height, or third dimension	HEIGHT (y), log	6n

K-TableEnd = F9S11

4435

K-Text = Sec. IDT – Additional AIs

K-TableID = F9S12

K-RootOID =	urn:oid:	1.0.15961.9	

K-IDsiz	ze = 128					
AI or AIs	IDvalue	OIDs	IDstring	Name	Data Title	FormatString
243	0	243	243	Packaging Component Number	PCN	1*20an
255	1	255	255	Global Coupon Number	GCN	13*25n
427	2	427	427	Country Subdivision of Origin Code for a Trade Item	ORIGIN SUBDIVISION	1*3an
710	3	710	710	National Healthcare Reimbursement Number – Germany (PZN)	NHRN PZN	3n 1*27an
711	4	711	711	National Healthcare Reimbursement Number – France (CIP)	NHRN CIP	3n 1*27an

K-Text =	= Sec. IDT	– Additional Als	S			
712	5	712	712	National Healthcare Reimbursement Number – Spain (CN)	NHRN CN	3n 1*27an
713	6	713	713	National Healthcare Reimbursement Number – Brazil (DRN)	NHRN DRN	3n 1*27an
8010	7	8010	8010	Component / Part Identifier	CPID	1*30an

K-Text =	= Sec. IDT	- Additional Al	S			
8011	8	8011	8011	Component / Part Identifier Serial Number	CPID Serial	1*12n
8017	9	8017	8017	Global Service Relation Number – Provider	GSRN - PROVIDER	18n
8019	10	8019	8019	Service Relation Instance Number	SRIN	1*10n
8200	11	8200	8200	Extended Packaging URL	PRODUCT URL	1*70an
16	12	16	16	Sell by date (YYMMDD)	SELL BY	6n
394n	13	394%x30- 39	394%x30- 39	Percentage discount of a coupon	PCT OFF	4n
7005	14	7005	7005	Catch area	CATCH AREA	1*12an
7006	15	7006	7006	First freeze date	FIRST FREEZE DATE	6n
7007	16	7007	7007	Harvest date	HARVEST DATE	6*12an
7008	17	7008	7008	Species for fishery purposes	ACQUATIC SPECIES	1*3an
7009	18	7009	7009	Fishing gear type	FISHING GEAR TYPE	1*10an
7010	19	7010	7010	Production method	PROD METHOD	1*2an
8012	20	8012	8012	Software version	VERSION	1*20an
416	21	416	416	GLN of the production or service location	PROD/SERV/LOC	13n
7020	22	7020	7020	Refurbishment lot ID	REFURB LOT	1*20an
7021	23	7021	7021	Functional status	FUNC STAT	1*20an
7022	24	7022	7022	Revision status	REV STAT	1*20an
7023	25	7023	7023	Global Individual Asset Identifier (GIAI) of an assembly	GIAI – ASSEMBLY	1*30an

K-Text	= Sec. II	DT – Additiona	l Als			
235	26	235	235	Third party controlled, serialised extension of GTIN	ТРХ	1*28an
417	27	417	417	Global Location Number of Party	PARTY	13n
714	28	714	714	National Healthcare Reimbursement Number – Portugal (AIM)	NHRN AIM	1*an20
7040	29	7040	7040	Unique Identification Code with Extensions (per EU 2018/574)	UIC	1n 1*3an
8013	30	8013	8013	Global Model Number	GMN	1*an30
8026	31	8026	8026	Identification of pieces of a trade item (ITIP) contained in a logistics unit	ITIP CONTENT	18n
8112	32	8112	8112	Paperless coupon code identification for use in North America		1*an70

4436 F.2 Comma-Separated-Value (CSV) format

4437This section is the Packed Objects ID Table for Data Format 9 (GS1 Application Identifiers) in4438machine readable, comma-separated-value format, as registered with ISO. See Section <u>F.1</u> for a4439non-normative listing of the content of the ID Table for Data Format 9, in a human readable, tabular4440format.

In the comma-separated-value format, line breaks are significant. However, certain lines are too
long to fit within the margins of this document. In the listing below, the symbol at the end of line
indicates that the ID Table line is continued on the following line. Such a line shall be interpreted by
concatenating the following line and omitting the symbol.

4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466	<pre>K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9,,,,,, K-Version = 1.00,,,,,, K-ISO15434=05,,,,, K-Text = Primary Base Table,,,,,, K-TableID = F9B0,,,,, K-TableID = r9B0,,,,, K-RootOID = urn:oid:1.0.15961.9,,,,, K-IDsize = 90,,,,, AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 0,1,0,0,SSCC (Serial Shipping Container Code),SSCC,18n 1,2,1,1,Global Trade Item Number,GTIN,14n 02 + 37,3,(2) (37),(02) (37),GTIN + Count of trade items contained in a logistic unit,CONTENT + COUNT,(14n)(1*8n) 10,4,10,10,Batch or lot number,BATCH/LOT,1*20an 11,5,11,11,Production date (YYMMDD),PROD DATE,6n 12,6,12,12,Due date (YYMMDD),DUE DATE,6n 13,7,13,13,Packaging date (YYMMDD),PACK DATE,6n 15,8,15,15,Best before date (YYMMDD),BEST BEFORE OR SELL BY,6n 17,9,17,17,Expiration date (YYMMDD),USE BY OR EXPIRY,6n 20,10,20,20,Internal product variant,VARIANT,2n 21,11,21,Serial number,SERIAL,1*20an 22,12,22,22,Consumer product variant,CPV,1*20an 240,13,240,240,Additional product identification assigned by the</pre>
	240,13,240,240,Additional product identification assigned by the
4467	manufacturer, ADDITIONAL ID, 1*30an
4468	241,14,241,241,Customer part number,CUST. PART NO.,1*30an
4469	242,15,242,242,Made-to-Order Variation Number,VARIATION NUMBER,1*6n
4470	250,16,250,250,Secondary serial number,SECONDARY SERIAL,1*30an

4471	251,17,251,251,Reference to source entity,REF. TO SOURCE ,1*30an
4472	253,18,253,253,Global Document Type Identifier,DOC. ID,13n 0*17an
4473 4474	30,19,30,30,Variable count,VAR. COUNT,1*8n 310n 320n etc,20,K-Secondary = S00,,"Net weight, kilograms or pounds or troy oz
4475	(Variable Measure Trade Item)",,
4476	311n 321n etc,21,K-Secondary = S01,,Length of first dimension (Variable Measure
4477	Trade Item),,
4478 4479	312n 324n etc,22,K-Secondary = S02,,"Width, diameter, or second dimension (Variable Measure Trade Item)",,
4480	313n 327n etc,23,K-Secondary = S03,,"Depth, thickness, height, or third dimension
4481	(Variable Measure Trade Item)",,
4482	314n 350n etc,24,K-Secondary = S04,,Area (Variable Measure Trade Item),,
4483 4484	315n 316n etc,25,K-Secondary = S05,,Net volume (Variable Measure Trade Item),, 330n or 340n,26,330%x30-36 / 340%x30-36,330%x30-36 / 340%x30-36,"Logistic weight, ■
4485	kilograms or pounds", GROSS WEIGHT (kg) or (lb), 6n / 6n
4486	"331n, 341n, etc",27,K-Secondary = S09,,Length or first dimension,,
4487	"332n, 344n, etc",28,K-Secondary = S10,,"Width, diameter, or second dimension",,
4488 4489	"333n, 347n, etc",29,K-Secondary = S11,,"Depth, thickness, height, or third dimension",,
4490	334n 353n etc,30,K-Secondary = S07,,Logistic Area,,
4491	335n 336n etc,31,K-Secondary = S06,335%x30-36,Logistic volume,,
4492	337(***),32,337%x30-36,337%x30-36,Kilograms per square metre,KG PER m ² ,6n
4493 4494	390n or 391n,33,390%x30-39 / 391%x30-39,390%x30-39 / 391%x30-39,Amount payable -
4495	392n or 393n,34,392%x30-39 / 393%x30-39,392%x30-39 / 393%x30-39,Amount payable for
4496	Variable Measure Trade Item - single monetary unit or ISO cc, PRICE,1*15n / 4*18n
4497	400,35,400,400,Customer's purchase order number,ORDER NUMBER,1*30an
4498 4499	401,36,401,401,Global Identification Number for Consignment,GINC,1*30an 402,37,402,402,Global Shipment Identification Number,GSIN,17n
4500	403,38,403,403,Routing code,ROUTE,1*30an
4501	410,39,410,410,Ship to - deliver to Global Location Number ,SHIP TO LOC,13n
4502	411,40,411,411,Bill to - invoice to Global Location Number,BILL TO ,13n
4503 4504	412,41,412,412,Purchased from Global Location Number,PURCHASE FROM,13n 413,42,413,413,Ship for - deliver for - forward to Global Location Number,SHIP FOR
4505	LOC,13n
4506	414 and 254,43,(414) [254],(414) [254],"Identification of a physical location GLN,
4507	and optional Extension",LOC No + GLN EXTENSION,(13n) [1*20an]
4508 4509	415 and 8020,44,(415) (8020),(415) (8020),Global Location Number of the Invoicing Party and Payment Slip Reference Number,PAY + REF No,(13n) (1*25an)
4510	420 or 421,45,(420/421),(420/421),Ship to - deliver to postal code,SHIP TO
4511	POST,(1*20an / 3n 1*9an)
4512	422,46,422,422,Country of origin of a trade item,ORIGIN,3n
4513 4514	423,47,423,423,Country of initial processing,COUNTRY - INITIAL PROCESS.,3*15n 424,48,424,424,Country of processing,COUNTRY - PROCESS.,3n
4515	425,49,425,425,Country of disassembly,COUNTRY - DISASSEMBLY,3n
4516	426,50,426,426,Country covering full process chain,COUNTRY - FULL PROCESS,3n
4517	7001,51,7001,7001,NATO stock number,NSN,13n
4518 4519	7002,52,7002,7002,UN/ECE meat carcasses and cuts classification,MEAT CUT,1*30an 7003,53,7003,7003,Expiration Date and Time,EXPIRY DATE/TIME,10n
4520	7004,54,7004,7004,Active Potency,ACTIVE POTENCY,1*4n
4521	703s,55,7030,7030,Approval number of processor with ISO country code, PROCESSOR #
4522	s,3n 1*27an
4523 4524	703s,56,7031,7031,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
4525	703s,57,7032,7032,Approval number of processor with ISO country code,PROCESSOR #
4526	s,3n 1*27an
4527	703s,58,7033,7033,Approval number of processor with ISO country code,PROCESSOR #
4528 4529	s,3n 1*27an 703s,59,7034,7034,Approval number of processor with ISO country code,PROCESSOR #
4529	s,3n 1*27an
4531	703s,60,7035,7035,Approval number of processor with ISO country code, PROCESSOR #
4532	s,3n 1*27an
4533 4534	703s,61,7036,7036,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
4534	703s,62,7037,7037,Approval number of processor with ISO country code,PROCESSOR #
4536	s,3n 1*27an

4537 703s,63,7038,7038,Approval number of processor with ISO country code, PROCESSOR # 4538 s,3n 1*27an 4539 703s,64,7039,7039,Approval number of processor with ISO country code, PROCESSOR # 4540 s,3n 1*27an 4541 8001,65,8001,8001,"Roll products - width, length, core diameter, direction, and 4542 splices", DIMENSIONS, 14n 4543 8002,66,8002,8002,Electronic serial identifier for cellular mobile telephones,CMT 4544 No.1*20an 4545 8003,67,8003,8003,Global Returnable Asset Identifier,GRAI,14n 0*16an 4546 8004,68,8004,8004,Global Individual Asset Identifier,GIAI,1*30an 4547 8005,69,8005,8005,Price per unit of measure,PRICE PER UNIT,6n 4548 8006,70,8006,8006,Identification of the component of a trade item,GCTIN,18n 4549 8007,71,8007,8007,International Bank Account Number ,IBAN,1*30an 4550 8008,72,8008,8008,Date and time of production,PROD TIME,8*12n 4551 8018,73,8018,8018,Global Service Relation Number - Recipient,GSRN - RECIPIENT,18n 4552 8100 8101 etc,74,K-Secondary = S08,,Coupon Codes,, 4553 90,75,90,90, Information mutually agreed between trading partners (including FACT 4554 DIs), INTERNAL, 1*30an 4555 91,76,91,91,Company internal information, INTERNAL, 1*an 4556 92,77,92,92,Company internal information, INTERNAL, 1*an 4557 93,78,93,93,Company internal information, INTERNAL, 1*an 4558 94,79,94,94,Company internal information,INTERNAL,1*an 4559 95,80,95,95,Company internal information, INTERNAL, 1*an 4560 96,81,96,96,Company internal information, INTERNAL, 1*an 4561 97,82,97,97,Company internal information,INTERNAL,1*an 4562 98,83,98,98,Company internal information,INTERNAL,1*an 4563 99,84,99,99,Company internal information,INTERNAL,1*an 4564 nnn,85,K-Secondary = S12,,Additional AIs,, 4565 4566 4567 "K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure 4568 Trade Item)",,,,,, K-TableID = F9S00,,,,,, 4569 4570 K-RootOID = urn:oid:1.0.15961.9,,,,, K-IDsize = 4,,,,,, 4571 4572 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 310(***),0,310%x30-36,310%x30-36,"Net weight, kilograms (Variable Measure Trade 4573 4574 Item)",NET WEIGHT (kq),6n 320(***),1,320%x30-36,320%x30-36,"Net weight, pounds (Variable Measure Trade 4575 4576 Item)",NET WEIGHT (lb),6n 4577 356(***),2,356%x30-36,356%x30-36,"Net weight, troy ounces (Variable Measure Trade 4578 Item)",NET WEIGHT (t),6n 4579 4580 4581 K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item),,,,, K-TableID = F9S01,,,,, 4582 4583 K-RootOID = urn:oid:1.0.15961.9,,,,, 4584 K-IDsize = 4,,,,, 4585 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 4586 311(***),0,311%x30-36,311%x30-36,"Length of first dimension, metres (Variable 4587 Measure Trade Item)", LENGTH (m), 6n 4588 321(***),1,321%x30-36,321%x30-36,"Length or first dimension, inches (Variable 4589 Measure Trade Item)", LENGTH (i), 6n 4590 322(***),2,322%x30-36,322%x30-36,"Length or first dimension, feet (Variable Measure 4591 Trade Item)", LENGTH (f), 6n 4592 323(***),3,323%x30-36,323%x30-36,"Length or first dimension, yards (Variable 4593 Measure Trade Item)", LENGTH (y), 6n 4594 4595 4596 "K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade 4597 Item)",,,,,, 4598 K-TableID = F9S02, ..., ...4599 K-RootOID = urn:oid:1.0.15961.9,,,,, 4600 K-IDsize = 4,,,,,, 4601 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString

4602	312(***),0,312%x30-36,312%x30-36,"Width, diameter, or second dimension, metres
4603	(Variable Measure Trade Item)",WIDTH (m),6n
4604	324(***),1,324%x30-36,324%x30-36,"Width, diameter, or second dimension, inches
4605	(Variable Measure Trade Item)",WIDTH (i),6n
4606	325(***),2,325%x30-36,325%x30-36,"Width, diameter, or second dimension, (Variable
4607	Measure Trade Item)", WIDTH (f), 6n
4608	326(***),3,326%x30-36,326%x30-36,"Width, diameter, or second dimension, yards
4609 4610	(Variable Measure Trade Item)",WIDTH (y),6n
4611	K-TableEnd = F9S02,,
4612	"K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure
4613	Trade Item)",,,,,
4614	K-TableID = F9S03,,,,,
4615	K-RootOID = urn:oid:1.0.15961.9,,,,,
4616	K-IDsize = 4,,,,,,
4617	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
4618	313(***),0,313%x30-36,313%x30-36,"Depth, thickness, height, or third dimension,
4619	metres (Variable Measure Trade Item)",HEIGHT (m),6n
4620	327(***),1,327%x30-36,327%x30-36,"Depth, thickness, height, or third dimension,
4621	inches (Variable Measure Trade Item)",HEIGHT (i),6n
4622	328(***),2,328%x30-36,328%x30-36,"Depth, thickness, height, or third dimension,
4623	feet (Variable Measure Trade Item)", HEIGHT (f), 6n
4624	329(***),3,329%x30-36,329%x30-36,"Depth, thickness, height, or third dimension,
4625 4626	yards (Variable Measure Trade Item)",HEIGHT (y),6n
4627	K-TableEnd = F9S03,,
4628	K-Text = Sec. IDT - Area (Variable Measure Trade Item),,,,,,
4629	K TableID = F9S04,,,,,
4630	K-RootOID = urn:oid:1.0.15961.9,,,,,
4631	K-IDsize = 4,,,,,
4632	AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString
4633	314(***),0,314%x30-36,314%x30-36,"Area, square metres (Variable Measure Trade
4634	Item)",AREA (m2),6n
4635	350(***),1,350%x30-36,350%x30-36,"Area, square inches (Variable Measure Trade
4636	Item)",AREA (i2),6n
4637	351(***),2,351%x30-36,351%x30-36,"Area, square feet (Variable Measure Trade
4638	Item)", AREA (f2), 6n
4639 4640	352(***),3,352%x30-36,352%x30-36,"Area, square yards (Variable Measure Trade Item)",AREA (y2),6n
4641	K-TableEnd = F9S04,,
4642	$\mathbf{K} = \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F} \mathbf{F}$
4643	K-Text = Sec. IDT - Net volume (Variable Measure Trade Item),,,,,,
4644	K-TableID = F9S05,,,,,
4645	K-RootOID = urn:oid:1.0.15961.9,,,,,
4646	K-IDsize = 8,,,,,,
4647	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
4648	315(***),0,315%x30-36,315%x30-36,"Net volume, litres (Variable Measure Trade
4649	Item)",NET VOLUME (1),6n
4650	316(***),1,316%x30-36,316%x30-36,"Net volume, cubic metres (Variable Measure Trade
4651	Item)",NET VOLUME (m3),6n
4652 4653	357(***),2,357%x30-36,357%x30-36,"Net weight (or volume), ounces (Variable Measure Trade Item)",NET VOLUME (oz),6n
4653	360(***),3,360%x30-36,360%x30-36,"Net volume, quarts (Variable Measure Trade
4655	Item)", NET VOLUME (q), 6n
4656	361(***),4,361%x30-36,361%x30-36,"Net volume, gallons U.S. (Variable Measure Trade
4657	Item)",NET VOLUME (q),6n
4658	364(***),5,364%x30-36,364%x30-36,"Net volume, cubic inches","VOLUME (i3), log",6n
4659	365(***),6,365%x30-36,365%x30-36,"Net volume, cubic feet (Variable Measure Trade
4660	Item)","VOLUME (f3), log",6n
4661	366(***),7,366%x30-36,366%x30-36,"Net volume, cubic yards (Variable Measure Trade
4662	Item)","VOLUME (y3), log",6n
4663	K-TableEnd = F9S05,,,,,,
4664	
4665	K-Text = Sec. IDT - Logistic Volume,,,,,
4666	K-TableID = F9S06,,,,,,
4667	K-RootOID = urn:oid:1.0.15961.9,,,,,

4668 K-IDsize = 8,,,,,, 4669 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 4670 335(***),0,335%x30-36,335%x30-36,"Logistic volume, litres","VOLUME (1), log",6n 336(***),1,336%x30-36,336%x30-36,"Logistic volume, cubic meters","VOLUME (m3), 4671 4672 log",6n 4673 362(***),2,362%x30-36,362%x30-36,"Logistic volume, quarts","VOLUME (q), log",6n 4674 363(***),3,363%x30-36,363%x30-36,"Logistic volume, gallons","VOLUME (g), log",6n 4675 367(***),4,367%x30-36,367%x30-36,"Logistic volume, cubic inches","VOLUME (q), 4676 log",6n 4677 368(***),5,368%x30-36,368%x30-36,"Logistic volume, cubic feet","VOLUME (g), log",6n 4678 369(***),6,369%x30-36,369%x30-36,"Logistic volume, cubic yards","VOLUME (i3), 4679 log",6n 4680 K-TableEnd = F9S06, , , , , ,4681 4682 K-Text = Sec. IDT - Logistic Area,,,,, 4683 K-TableID = F9S07,,,,,, 4684 K-RootOID = urn:oid:1.0.15961.9,,,,, 4685 K-IDsize = 4,,,,, AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 4686 334(***),0,334%x30-36,334%x30-36,"Area, square metres","AREA (m2), log",6n 4687 4688 353(***),1,353%x30-36,353%x30-36,"Area, square inches","AREA (i2), log",6n 4689 $354(***)\,,2\,,354\%x30-36\,,354\%x30-36\,,"\mbox{Area},\mbox{ square feet}","\mbox{AREA}$ (f2), log",6n 4690 355(***),3,355%x30-36,355%x30-36,"Area, square yards","AREA (y2), log",6n 4691 K-TableEnd = F9S07, , , , , , , ,4692 4693 K-Text = Sec. IDT - Coupon Codes,,,,, K-TableID = F9S08,,,,,, 4694 4695 K-RootOID = urn:oid:1.0.15961.9,,,,, 4696 K-IDsize = 8,,,,,, 4697 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 4698 8100,0,8100,8100,GS1-128 Coupon Extended Code - NSC + Offer Code,-,6n 4699 8101,1,8101,GS1-128 Coupon Extended Code - NSC + Offer Code + end of offer 4700 code, -, 10n 4701 8102,2,8102,GS1-128 Coupon Extended Code - NSC ** DEPRECATED as of GS1GS15i2 **,-,2n 4702 4703 8110,3,8110,8110,Coupon Code Identification for Use in North America, 1*70an 4704 8111,22,8111,8111,Loyalty points of a coupon,POINTS,4n K-TableEnd = F9S08,,,,,, 4705 4706 4707 K-Text = Sec. IDT - Length or first dimension,,,,, 4708 K-TableID = F9S09,,,,,, 4709 K-RootOID = urn:oid:1.0.15961.9,,,,, 4710 K-IDsize = 4,,,,,, 4711 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 4712 331(***),0,331%x30-36,331%x30-36,"Length or first dimension, metres","LENGTH (m), 4713 log",6n 4714 341(***),1,341%x30-36,341%x30-36,"Length or first dimension, inches","LENGTH (i), 4715 log",6n 4716 342(***),2,342%x30-36,342%x30-36,"Length or first dimension, feet","LENGTH (f), 4717 log",6n 4718 343(***),3,343%x30-36,343%x30-36,"Length or first dimension, yards","LENGTH (y), 4719 log",6n K-TableEnd = F9S09, , , , , ,4720 4721 4722 "K-Text = Sec. IDT - Width, diameter, or second dimension",,,,,, 4723 K-TableID = F9S10,,,,, K-RootOID = urn:oid:1.0.15961.9,,,,, 4724 K-IDsize = 4,,,,,, 4725 4726 AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString 332(***),0,332%x30-36,332%x30-36,"Width, diameter, or second dimension, 4727 4728 metres","WIDTH (m), log",6n 4729 344(***),1,344%x30-36,344%x30-36,"Width, diameter, or second dimension","WIDTH 4730 (i), log",6n 345(***),2,345%x30-36,345%x30-36,"Width, diameter, or second dimension","WIDTH 4731 4732 (f), log",6n


```
4733
               346(***),3,346%x30-36,346%x30-36,"Width, diameter, or second dimension","WIDTH
4734
               (y), log",6n
4735
               4736
4737
               "K-Text = Sec. IDT - Depth, thickness, height, or third dimension",,,,,,
               K-TableID = F9S11,,,,,
4738
4739
               K-RootOID = urn:oid:1.0.15961.9,,,,,
               K-IDsize = 4,,,,,,
4740
4741
               AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString
4742
               333(***),0,333%x30-36,333%x30-36,"Depth, thickness, height, or third dimension,
4743
               metres","HEIGHT (m), log",6n
4744
               347(***),1,347%x30-36,347%x30-36,"Depth, thickness, height, or third
4745
               dimension", "HEIGHT (i), log", 6n
               348(***),2,348%x30-36,348%x30-36,"Depth, thickness, height, or third
4746
4747
               dimension", "HEIGHT (f), log", 6n
4748
               349(***),3,349%x30-36,349%x30-36,"Depth, thickness, height, or third
4749
               dimension", "HEIGHT (y), log", 6n
4750
               K-TableEnd = F9S11,,,,,
4751
4752
               K-Text = Sec. IDT - Additional AIs,,,,,
4753
               K-TableID = F9S12,,,,,,
4754
               K-RootOID = urn:oid:1.0.15961.9,,,,,
               K-IDsize = 128,,,,,
4755
4756
               AI or AIs, IDvalue, OIDs, IDstring, Name, Data Title, FormatString
4757
               243,0,243,243,Packaging Component Number,PCN,1*20an
4758
               255,1,255,255,Global Coupon Number,GCN,13*25n
4759
               427,2,427,427,Country Subdivision of Origin Code for a Trade Item,ORIGIN
4760
               SUBDIVISION, 1*3an
               710,3,710,710,National Healthcare Reimbursement Number - Germany (PZN),NHRN PZN,3n
4761
4762
               1*27an
4763
               711,4,711,711,National Healthcare Reimbursement Number - France (CIP),NHRN CIP,3n
4764
               1*27an
4765
               712,5,712,712,National Healthcare Reimbursement Number - Spain (CN),NHRN CN,3n
4766
               1*27an
4767
               713,6,713,713,National Healthcare Reimbursement Number - Brazil (DRN),NHRN DRN,3n
4768
               1*27an
4769
               8010,7,8010,8010,Component / Part Identifier,CPID,1*30an
4770
               8011,8,8011,8011,Component / Part Identifier Serial Number,CPID Serial,1*12n
4771
               8017,9,8017,610bal Service Relation Number - Provider,GSRN - PROVIDER,18n
4772
               8019,10,8019,8019,Service Relation Instance Number,SRIN,1*10n
4773
               8200,11,8200,8200,Extended Packaging URL,PRODUCT URL,1*70an
4774
               16,12,16,16,Sell by date (YYMMDD),SELL BY,6n
4775
               394n,13,394%x30-39,394%x30-39,Percentage discount of a coupon,PCT OFF,4n
4776
               7005,14,7005,7005,Catch area,CATCH AREA,1*12an
4777
               7006,15,7006,7006,First freeze date,FIRST FREEZE DATE,6n
               7007,16,7007,7007,Harvest date,HARVEST DATE,6*12an
4778
4779
               7008,17,7008,7008,Species for fishery purposes,ACQUATIC SPECIES,1*3an
4780
               7009,18,7009,7009,Fishing gear type,FISHING GEAR TYPE,1*10an
4781
               7010,19,7010,7010,Production method,PROD METHOD,1*2an
4782
               8012,20,8012,8012,Software version,VERSION,1*20an
4783
               416,21,416,416,GLN of the production or servie location,PROD/SERV/LOC,13n
4784
               7020,22,7020,7020,Refurbishment lot ID,REFURB LOT,1*20an
4785
               7021,23,7021,7021,Functional status,FUNC STAT,1*20an
4786
               7022,24,7022,7022,Revision status,REV STAT,1*20an
4787
               7023,25,7023,7023,Global Individual Assset Identifier (GIAI) of an Assembly,GIAI-
4788
               ASSEMBLY,1*30an
4789
               235,26,235,235,Third party controlled, serialised extension of GTIN,TPX,1*28n
4790
               417,27,417,417,Global Location Number of Party,PGLN,13n
4791
               714,28,714,714,National Healthcare Reimbursement Number - Portugal (AIM),NHRH
4792
               AIM,1*an20
4793
               7040,29,7040,7040,Unique Identification Code with Extensions (per EU 2018/574),UIC,
4794
               1n 1*3an
4795
               8013,30,8013,8013,Global Model Number,GMN,1*an30
4796
               8026,31,8026,8026,Identification of pieces of a trade item (ITIP) contained in a
               logistics unit, ITIP CONTENT, 18n
4797
4798
               8112,32,8112,8112,Paperless coupon code identification for use in North
```


EPC Tag Data Standard Standard

America,,1*an70 K-TableEnd = F9S12,,,,,,

4804 4805

4806

4807

4808

4812

4813

4814

4815

4802 G 6-Bit Alphanumeric Character Set

The following table specifies the characters that are used in the Component / Part Reference in CPI EPCs and in the original part number and serial number in ADI EPCs. A subset of these characters are also used for the CAGE/DoDAAC code in ADI EPCs. The columns are as follows:

- Graphic symbol: The printed representation of the character as used in human-readable forms.
 - Name: The common name for the character
- 4809
 Binary Value: A Binary numeral that gives the 6-bit binary value for the character as used in EPC binary encodings. This binary value is always equal to the least significant six bits of the ISO 646 (ASCII) code for the character.
 - URI Form: The representation of the character within Pure Identity EPC URI and EPC Tag URI forms. This is either a single character whose ASCII code's least significant six bits is equal to the value in the "binary value" column, or an escape triplet consisting of a percent character followed by two characters giving the hexadecimal value for the character.

4816 **Table G-1** Characters Permitted in 6-bit Alphanumeric Fields

Graphic symbol	Name	Binary value	URI Form	Graphic symbol	Name	Binary value	URI Form
#	Pound/ Number Sign	100011	%23	Н	Capital H	001000	Н
-	Hyphen/ Minus Sign	101101	-	I	Capital I	001001	I
/	Forward Slash	101111	%2F	J	Capital J	001010	J
0	Zero Digit	110000	0	К	Capital K	001011	К
1	One Digit	110001	1	L	Capital L	001100	L
2	Two Digit	110010	2	М	Capital M	001101	М
3	Three Digit	110011	3	Ν	Capital N	001110	Ν
4	Four Digit	110100	4	0	Capital O	001111	0
5	Five Digit	110101	5	Р	Capital P	010000	Р
6	Six Digit	110110	6	Q	Capital Q	010001	Q
7	Seven Digit	110111	7	R	Capital R	010010	R
8	Eight Digit	111000	8	S	Capital S	010011	S
9	Nine Digit	111001	9	Т	Capital T	010100	Т
А	Capital A	000001	А	U	Capital U	010101	U
В	Capital B	000010	В	V	Capital V	010110	V
С	Capital C	000011	С	W	Capital W	010111	W
D	Capital D	000100	D	х	Capital X	011000	Х
E	Capital E	000101	E	Y	Capital Y	011001	Y
F	Capital F	000110	F	Z	Capital Letter Z	011010	Z
G	Capital G	000111	G				

4817 H (Intentionally Omitted)

4818 4819 [This appendix is omitted so that Appendices I through M, which specify Packed Objects, have the same appendix letters as the corresponding annexes of ISO/IEC 15962, 2nd Edition.]

Packed Objects structure 4820

4821 1.1 **Overview**

4822 The Packed Objects format provides for efficient encoding and access of user data. The Packed Objects format offers increased encoding efficiency compared to the No-Directory and Directory 4823 Access-Methods partly by utilising sophisticated compaction methods, partly by defining an inherent 4824 4825 directory structure at the front of each Packed Object (before any of its data is encoded) that 4826 supports random access while reducing the fixed overhead of some prior methods, and partly by 4827 utilising data-system-specific information (such as the GS1 definitions of fixed-length Application 4828 Identifiers).

1.2 **Overview of Packed Objects documentation** 4829

- 4830 The formal description of Packed Objects is presented in this Appendix and Appendices J, K, L, and 4831 M. as follows:
- 4832 The overall structure of Packed Objects is described in <u>Section 1.3</u>.
 - The individual sections of a Packed Object are described in Sections <u>1.4</u> through <u>1.9</u>.
- 4834 The structure and features of ID Tables (utilised by Packed Objects to represent various data 4835 system identifiers) are described in Appendix J.
- 4836 The numerical bases and character sets used in Packed Objects are described in Appendix K.
- 4837 An encoding algorithm and worked example are described in Appendix L.
- 4838 The decoding algorithm for Packed Objects is described in Appendix M.
- 4839 In addition, note that all descriptions of specific ID Tables for use with Packed Objects are registered separately, under the procedures of ISO/IEC 15961-2 as is the complete formal description of the 4840 4841 machine-readable format for registered ID Tables.

4842 1.3 High-Level Packed Objects format design

1.3.1 **Overview** 4843

4844 The Packed Objects memory format consists of a sequence in memory of one or more "Packed 4845 Objects" data structures. Each Packed Object may contain either encoded data or directory 4846 information, but not both. The first Packed Object in memory is preceded by a DSFID. The DSFID 4847 indicates use of Packed Objects as the memory's Access Method, and indicates the registered Data 4848 Format that is the default format for every Packed Object in that memory. Every Packed Object may 4849 be optionally preceded or followed by padding patterns (if needed for alignment on word or block 4850 boundaries). In addition, at most one Packed Object in memory may optionally be preceded by a 4851 pointer to a Directory Packed Object (this pointer may itself be optionally followed by padding). This 4852 series of Packed Objects is terminated by optional padding followed by one or more zero-valued 4853 octets aligned on byte boundaries. See Figure 1 3-1, which shows this sequence when appearing in 4854 an RFID tag.

4855 4856

4833

Note: Because the data structures within an encoded Packed Object are bit-aligned rather than byte-aligned, this Appendix use the term 'octet' instead of 'byte' except in case where an eight-bit quantity must be aligned on a byte boundary.

Figure I-1 Overall Memory structure when using Packed Objects								
DSFID	Optional	First Packed	Optional	Optional		Optional	Optional	
	Pointer*	Object	Pointer*	Second Packed		Packed	Pointer*	Zero
	And/Or	-	And/Or	Object		Object	And/Or	Octet(s)
	Padding		Padding	-		-	Padding	

4859 4860

4857

4858

*Note: the Optional Pointer to a Directory Packed Object may appear at most only once in memory

4861 4862 4863 4864 4865		Every Packed Object represents a sequence of one or more data system Identifiers, each specified by reference to an entry within a Base ID Table from a registered data format. The entry is referenced by its relative position within the Base Table; this relative position or Base Table index is referred to throughout this specification as an "ID Value." There are two different Packed Objects methods available for representing a sequence of Identifiers by reference to their ID Values:						
4866 4867		 An ID List Packed Object (IDLPO) encodes a series of ID Values as a list, whose length depends on the number of data items being represented; 						
4868 4869 4870 4871		An ID Map Packed Object (IDMPO) instead encodes a fixed-length bit array, whose length depends on the total number of entries defined in the registered Base Table. Each bit in the array is '1' if the corresponding table entry is represented by the Packed Object, and is '0' otherwise.						
4872 4873 4874 4875 4876 4877 4878 4879 4880		An ID List is the default Packed Objects format, because it uses fewer bits than an ID Map, if the list contains only a small percentage of the data system's defined ID Values. However, if the Packed Object includes more than about one-quarter of the defined entries, then an ID Map requires fewer bits. For example, if a data system has sixteen entries, then each ID Value (table index) is a four bit quantity, and a list of four ID Values takes as many bits as would the complete ID Map. An ID Map's fixed-length characteristic makes it especially suitable for use in a Directory Packed Object, which lists all of the Identifiers in all of the Packed Objects in memory (see section <u>1.9</u>). The overall structure of a Packed Object is the same, whether an IDLPO or an IDMPO, as shown in Figure I 3-2 and as described in the next subsection.						
4881		Figure I-2 Packed object structure						
1001		Optional FormatObject Info Section IDLPO or IDMPO)Secondary ID SectionAux Format SectionData Section (if needed)Flags(if needed)(if needed)(if needed)						
4882 4883 4884 4885 4886		Packed objects may be made "editable", by adding an optional Addendum subsection to the end of the Object Info section, which includes a pointer to an "Addendum Packed Object" where additions and/or deletions have been made. One or more such "chains" of editable "parent" and "child" Packed Objects may be present within the overall sequence of Packed Objects in memory, but no more than one chain of Directory Packed Objects may be present.						
4887	1.3.2	Descriptions of each section of a Packed Object's structure						
4888 4889 4890 4891 4892		Each Packed Object consists of several bit-aligned sections (that is, no pad bits between sections are used), carried in a variable number of octets. All required and optional Packed Objects formats are encompassed by the following ordered list of Packed Objects sections. Following this list, each Packed Objects section is introduced, and later sections of this Annex describe each Packed Objects section in detail.						
4893 4894 4895 4896		Format Flags: A Packed Object may optionally begin with the pattern '0000' which is reserved to introduce one or more Format Flags, as described in <u>1.4.2</u> . These flags may indicate use of the non-default ID Map format. If the Format Flags are not present, then the Packed Object defaults to the ID List format.						
4897		 Certain flag patterns indicate an inter-Object pattern (Directory Pointer or Padding) 						
4898 4899		Other flag patterns indicate the Packed Object's type (Map or. List), and may indicated the presence of an optional Addendum subsection for editing.						

- Object Info: All Packed Objects contain an Object Info Section which includes Object Length Information and ID Value Information:
- Object Length Information includes an ObjectLength field (indicating the overall length of the Packed Object in octets) followed by Pad Indicator bit, so that the number of significant bits in the Packed Object can be determined.
- 4905ID Value Information indicates which Identifiers are present and in what order, and (if an4906IDLPO) also includes a leading NumberOfIDs field, indicating how many ID Values are4907encoded in the ID List.
- 4908The Object Info section is encoded in one of the following formats, as shown in <u>Figure 1-3</u> and <u>Figure 1-3</u> and <u>Figure 1-3</u> and <u>Figure 1-3</u> and <u>Figure 1-3</u>4909<u>1-4</u>

4901

4902

4903

4910	•	ID List (IDLPO) Object Info format:
4911		 Object Length (EBV-6) plus Pad Indicator bit
4912		 A single ID List or an ID Lists Section (depending on Format Flags)
4913	•	ID Map (IDMPO) Object Info format:
4914		One or more ID Map sections
4915		Object Length (EBV-6) plus Pad Indicator bit
4916 4917		r either of these Object Info formats, an Optional Addendum subsection may be present at the d of the Object Info section.
4918 4919 4920	•	Secondary ID Bits : A Packed Object may include a Secondary ID section, if needed to encode additional bits that are defined for some classes of IDs (these bits complete the definition of the ID).
4921 4922 4923	•	Aux Format Bits: A Data Packed Object may include an Aux Format Section, which if present encodes one or more bits that are defined to support data compression, but do not contribute to defining the ID.
4924 4925 4926 4927 4928	•	Data Section: A Data Packed Object includes a Data Section, representing the compressed data associated with each of the identifiers listed within the Packed Object. This section is omitted in a Directory Packed Object, and in a Packed Object that uses No-directory compaction (see <u>1.7.1</u>). Depending on the declaration of data format in the relevant ID table, the Data section will contain either or both of two subsections:
4929 4930		Known-Length Numerics subsection: this subsection compacts and concatenates all of the non-empty data strings that are known a priori to be numeric.
4931 4932		 AlphaNumeric subsection: this subsection concatenates and compacts all of the non- empty data strings that are not a priori known to be all-numeric.
4933		Figure I-3 IDLPO Object Info StructureObject Info, in a Default ID List POObject Info, in a Non-default ID List POObjectNumberIDOptionalLengthOf IDsListAddendum
4934		Figure I-4 IDMPO Object Info StructureObject Info, in an ID Map POID Map SectionObjectOptional(one or more maps)LengthAddendum

4935 I.4 Format Flags section

The default layout of memory, under the Packed Objects access method, consists of a leading 4936 DSFID, immediately followed by an ID List Packed Object (at the next byte boundary), then 4937 optionally additional ID List Packed Objects (each beginning at the next byte boundary), and 4938 terminated by a zero-valued octet at the next byte boundary (indicating that no additional Packed 4939 4940 Objects are encoded). This section defines the valid Format Flags patterns that may appear at the expected start of a Packed Object to override the default layout if desired (for example, by changing 4941 the Packed Object's format, or by inserting padding patterns to align the next Packed Object on a 4942 4943 word or block boundary). The set of defined patterns are shown below.

4944 **Table I-1** Format Flag

Bit Pattern	Description	Additional Info	See Section
0000 0000	Termination Pattern	No more Packed Objects follow	<u>1.4.1</u>
LLLLL xx	First octet of an IDLPO	For any LLLLLL > 3	<u>1.5</u>
0000	Format Flags starting pattern	(if the full EBV-6 is non-zero)	<u>1.4.2</u>
0000 10NA	IDLPO with: N = 1: non-default Info A = 1: Addendum Present	If N = 1: allows multiple ID tables If A = 1: Addendum ptr(s) at end of Object Info section	<u>1.4.3</u>

Bit Pattern	Description	Additional Info	See Section
0000 01xx	Inter-PO pattern	A Directory Pointer, or padding	<u>1.4.4</u>
0000 0100	Signifies a padding octet	No padding length indicator follows	<u>1.4.4</u>
0000 0101	Signifies run-length padding	An EBV-8 padding length follows	<u>1.4.4</u>
0000 0110	RFU		<u>1.4.4</u>
0000 0111	Directory pointer	Followed by EBV-8 pattern	<u>1.4.4</u>
0000 11xx	ID Map Packed Object		<u>1.4.2</u>
0000 0001 0000 0010 0000 0011	[Invalid]	Invalid pattern	

4945 I.4.1 Data terminating flag pattern

- 4946 A pattern of eight or more '0' bits at the expected start of a Packed Object denotes that no more 4947 Packed Objects are present in the remainder of memory.
- 4948 NOTE: Six successive '0' bits at the expect start of a Packed Object would (if interpreted as a Packed 4949 Object) indicate an ID List Packed Object of length zero.

4950 I.4.2 Format flag section starting bit patterns

- 4951 A non-zero EBV-6 with a leading pattern of "0000" is used as a Format Flags section Indication
 4952 Pattern. The additional bits following an initial '0000' format Flag Indicating Pattern are defined as follows:
 4954 A following two-bit pattern of '10' (creating an initial pattern of '000010') indicates an IDLPO
 - A following two-bit pattern of '10' (creating an initial pattern of '000010') indicates an IDLPO with at least one non-default optional feature (see <u>1.4.3</u>)
 - A following two-bit pattern of '11' indicates an IDMPO, which is a Packed Object using an ID Map format instead of ID List-format The ID Map section (see <u>1.9</u>) immediately follows this two-bit pattern.
- A following two-bit pattern of '01' signifies an External pattern (Padding pattern or Pointer) prior to the start of the next Packed Object (see <u>1.4.4</u>)
- 4961 A leading EBV-6 Object Length of less than four is invalid as a Packed Objects length.
 - **Note:** The shortest possible Packed Object is an IDLPO, for a data system using four bits per ID Value, encoding a single ID Value. This Packed Object has a total of 14 fixed bits. Therefore, a two-octet Packed Object would only contain two data bits, and is invalid. A three-octet Packed Object would be able to encode a single data item up to three digits long. In order to preserve "3" as an invalid length in this scenario, the Packed Objects encoder shall encode a leading Format Flags section (with all options set to zero, if desired) in order to increase the object length to four.

4969 I.4.3 IDLPO Format Flags

4955

4956 4957

4958

4962

4963

4964

4965

4966

4967

- 4970The appearance of '000010' at the expected start of a Packed Object is followed by two additional4971bits, to form a complete IDLPO Format Flags section of "000010NA", where:
- If the first additional bit 'N' is '1', then a non-default format is employed for the IDLPO Object Info section. Whereas the default IDLPO format allows for only a single ID List (utilising the registration's default Base ID Table), the optional non-default IDLPO Object Info format supports a sequence of one or more ID Lists, and each such list begins with identifying information as to which registered table it represents (see <u>1.5.1</u>).
- 4977
 If the second additional bit 'A' is '1', then an Addendum subsection is present at the end of the Object Info section (see <u>1.5.6</u>).

4995

4996

4979 I.4.4 Patterns for use between Packed Objects

4980 The appearance of '000001' at the expected start of a Packed Object is used to indicate either 4981 padding or a directory pointer, as follows:

- 4982 A following two-bit pattern of '11' indicates that a Directory Packed Object Pointer follows the pattern. The pointer is one or more octets in length, in EBV-8 format. This pointer may be Null 4983 4984 (a value of zero), but if non-zero, indicates the number of octets from the start of the pointer to 4985 the start of a Directory Packed Object (which if editable, shall be the first in its "chain"). For 4986 example, if the Format Flags byte for a Directory Pointer is encoded at byte offset 1, the Pointer 4987 itself occupies bytes beginning at offset 2, and the Directory starts at byte offset 9, then the Dir 4988 Ptr encodes the value "7" in EBV-8 format. A Directory Packed Object Pointer may appear before 4989 the first Packed Object in memory, or at any other position where a Packed Object may begin, 4990 but may only appear once in a given data carrier memory, and (if non-null) must be at a lower 4991 address than the Directory it points to. The first octet after this pointer may be padding (as 4992 defined immediately below), a new set of Format Flag patterns, or the start of an ID List Packed 4993 Object.
 - A following two-bit pattern of '00' indicates that the full eight-bit pattern of '00000100' serves as a padding byte, so that the next Packed Object may begin on a desired word or block boundary. This pattern may repeat as necessary to achieve the desired alignment.
- A following two-bit pattern of '01' as a run-length padding indicator, and shall be immediately followed by an EBV-8 indicating the number of octets from the start of the EBV-8 itself to the start of the next Packed Object (for example, if the next Packed Object follows immediately, the EBV-8 has a value of one). This mechanism eliminates the need to write many words of memory in order to pad out a large memory block.
- A following two-bit pattern of '10' is Reserved.

5003 I.5 Object Info section

5004Each Packed Object's Object Info section contains both Length Information (the size of the Packed5005Object, in bits and in octets), and ID Values Information. A Packed Object encodes representations5006of one or more data system Identifiers and (if a Data Packed Object) also encodes their associated5007data elements (AI strings, DI strings, etc). The ID Values information encodes a complete listing of5008all the Identifiers (AIs, DIs, etc) encoded in the Packed Object, or (in a Directory Packed Object) all5009the Identifiers encoded anywhere in memory.

- 5010 To conserve encoded and transmitted bits, data system Identifiers (each typically represented in 5011 data systems by either two, three, or four ASCII characters) is represented within a Packed Object 5012 by an ID Value, representing an index denoting an entry in a registered Base Table of ID Values. A single ID Value may represent a single Object Identifier, or may represent a commonly-used 5013 sequence of Object Identifiers. In some cases, the ID Value represents a "class" of related Object 5014 5015 Identifiers, or an Object Identifier sequence in which one or more Object Identifiers are optionally 5016 encoded; in these cases, Secondary ID Bits (see 1.6) are encoded in order to specify which selection or option was chosen when the Packed Object was encoded. A "fully-qualified ID Value" (FQIDV) is 5017 5018 an ID Value, plus a particular choice of associated Secondary ID bits (if any are invoked by the ID 5019 Value's table entry). Only one instance of a particular fully-qualified ID Value may appear in a data 5020 carrier's Data Packed Objects, but a particular ID Value may appear more than once, if each time it 5021 is "qualified" by different Secondary ID Bits. If an ID Value does appear more than once, all occurrences shall be in a single Packed Object (or within a single "chain" of a Packed Object plus its 5022 5023 Addenda).
- 5024There are two methods defined for encoding ID Values: an ID List Packed Object uses a variable-5025length list of ID Value bit fields, whereas an ID Map Packed Object uses a fixed-length bit array.5026Unless a Packed Object's format is modified by an initial Format Flags pattern, the Packed Object's5027format defaults to that of an ID List Packed Object (IDLPO), containing a single ID List, whose ID5028Values correspond to the default Base ID Table of the registered Data Format. Optional Format Flags5029can change the format of the ID Section to either an IDMPO format, or to an IDLPO format encoding5030an ID Lists section (which supports multiple ID Tables, including non-default data systems).
- 5031Although the ordering of information within the Object Info section varies with the chosen format5032(see <u>1.5.1</u>), the Object Info section of every Packed Object shall provide Length information as5033defined in <u>1.5.2</u>, and ID Values information (see <u>1.5.3</u>) as defined in <u>1.5.4</u>, or <u>1.5.5</u>. The Object Info

5034section (of either an IDLPO or an IDMPO) may conclude with an optional Addendum subsection (see50351.5.6).

5036 I.5.1 Object Info formats

5037 I.5.1.1 IDLPO default Object Info format

5038The default IDLPO Object Info format is used for a Packed Object either without a leading Format5039Flags section, or with a Format Flags section indicating an IDLPO with a possible Addendum and a5040default Object Info section. The default IDLPO Object Info section contains a single ID List5041(optionally followed by an Addendum subsection if so indicated by the Format Flags). The format of5042the default IDLPO Object Info section is shown in the table below.

5043 Table I-2 Default IDLPO Object Info format

Field Name:	Length Information	NumberOfIDs	ID Listing	Addendum subsection
Usage:	The number of octets in this Object, plus a last-octet pad indicator	number of ID Values in this Object (minus one)	A single list of ID Values; value size depends on registered Data Format	Optional pointer(s) to other Objects containing Edit information
Structure:	Variable: see <u>1.5.2</u>	Variable: EBV-3	See <u>1.5.4</u>	See <u>1.5.6</u>

5044In a IDLPO's Object Info section, the NumberOfIDs field is an EBV-3 Extensible Bit Vector, consisting5045of one or more repetitions of an Extension Bit followed by 2 value bits. This EBV-3 encodes one less5046than the number of ID Values on the associated ID Listing. For example, an EBV-3 of '101 000'5047indicates (4 + 0 + 1) = 5 IDs values. The Length Information is as described in <u>1.5.2</u> for all Packed5048Objects. The next fields are an ID Listing (see <u>1.5.4</u>) and an optional Addendum subsection (see5049<u>1.5.6</u>).

5050 I.5.1.2 IDLPO non-default Object Info format

5051Leading Format Flags may modify the Object Info structure of an IDLPO, so that it may contain5052more than one ID Listing, in an ID Lists section (which also allows non-default ID tables to be5053employed). The non-default IDLPO Object Info structure is shown in the table below.

5054 **Table I-3** Non-Default IDLPO Object Info format

Field Name:	Length Info	ID Lists Section, first List			Optional	Null App	Addendum
		Application Indicator	Number of IDs	ID Listing	Additional ID List(s)	Indicator (single zero bit)	Subsection
Usage:	The number of octets in this Object, plus a last- octet pad indicator	Indicates the selected ID Table and the size of each entry	Number Of ID Values on the list (minus one)	Listing of ID Values, then one F/R Use bit	Zero or more repeated lists, each for a different ID Table		Optional pointer(s) to other Objects containing Edit information
Structure:	see <u>1.5.2</u>	see <u>1.5.3.1</u>	See <u>1.5.1.1</u>	See <u>1.5.4</u> and <u>1.5.3.2</u>	References in previous columns	See <u>1.5.3.1</u>	See <u>1.5.6</u>

5055 **I.5.1.3 IDMPO Object Info format**

5056Leading Format Flags may define the Object Info structure to be an IDMPO, in which the Length5057Information (and optional Addendum subsection) follow an ID Map section (see <u>1.5.5</u>). This5058arrangement ensures that the ID Map is in a fixed location for a given application, of benefit when5059used as a Directory. The IDMPO Object Info structure is shown in the table below.

Table I-4 IDMPO Object Info format

Field Name:	ID Map section	Length Information	Addendum
Usage:	One or more ID Map structures, each using a different ID Table	The number of octets in this Object, plus a last-octet pad indicator	Optional pointer(s) to other Objects containing Edit information
Structure:	see <u>1.9.1</u>	See <u>1.5.2</u>	See <u>1.5.6</u>

5061 **I.5.2 Length Information**

5062 5063

The format of the Length information, always present in the Object Info section of any Packed Object, is shown in the table below.

5064 **Table I-5** Packed Object Length information

Field Name:	ObjectLength	Pad Indicator
Usage:	The number of 8-bit bytes in this Object This includes the 1st byte of this Packed Object, including its IDLPO/IDMPO format flags if present. It excludes patterns for use between Packed Objects, as specified in <u>1.4.4</u>	If '1': the Object's last byte contains at least 1 pad
Structure:	Variable: EBV-6	Fixed: 1 bit

5065The first field, ObjectLength, is an EBV-6 Extensible Bit Vector, consisting of one or more repetitions5066of an Extension Bit and 5 value bits. An EBV-6 of '000100' (value of 4) indicates a four-byte Packed5067Object, An EBV-6 of '100001 000000' (value of 32) indicates a 32-byte Object, and so on.

5068 The Pad Indicator bit immediately follows the end of the EBV-6 ObjectLength. This bit is set to '0' if 5069 there are no padding bits in the last byte of the Packed Object. If set to '1', then bitwise padding 5070 begins with the least-significant or rightmost '1' bit of the last byte, and the padding consists of this rightmost '1' bit, plus any '0' bits to the right of that bit. This method effectively uses a single bit to 5071 indicate a *three*-bit quantity (i.e., the number of trailing pad bits). When a receiving system wants 5072 to determine the total number of bits (rather than bytes) in a Packed Object, it would examine the 5073 5074 ObjectLength field of the Packed Object (to determine the number of bytes) and multiply the result 5075 by eight, and (if the Pad Indicator bit is set) examine the last byte of the Packed Object and decrement the bit count by (1 plus the number of '0' bits following the rightmost '1' bit of that final 5076 5077 byte).

5078 I.5.3 General description of ID values

5079 A registered data format defines (at a minimum) a Primary Base ID Table (a detailed specification 5080 for registered ID tables may be found in Annex \mathcal{D} . This base table defines the data system Identifier(s) represented by each row of the table, any Secondary ID Bits or Aux Format bits 5081 invoked by each table entry, and various implicit rules (taken from a predefined rule set) that 5082 5083 decoding systems shall use when interpreting data encoded according to each entry. When a data item is encoded in a Packed Object, its associated table entry is identified by the entry's relative 5084 position in the Base Table. This table position or index is the ID Value that is represented in Packed 5085 5086 Objects.

5087 A Base Table containing a given number of entries inherently specifies the number of bits needed to encode a table index (i.e., an ID Value) in an ID List Packed Object (as the Log (base 2) of the 5088 5089 number of entries). Since current and future data system ID Tables will vary in unpredictable ways 5090 in terms of their numbers of table entries, there is a need to pre-define an ID Value Size mechanism 5091 that allows for future extensibility to accommodate new tables, while minimising decoder complexity 5092 and minimising the need to upgrade decoding software (other than the addition of new tables). 5093 Therefore, regardless of the exact number of Base Table entries defined, each Base Table definition 5094 shall utilise one of the predefined sizes for ID Value encodings defined in Table I 5-5 (any unused 5095 entries shall be labelled as reserved, as provided in Annex \mathcal{D} . The ID Size Bit pattern is encoded in a 5096 Packed Object only when it uses a non-default Base ID Table. Some entries in the table indicate a 5097 size that is not an integral power of two. When encoding (into an IDLPO) ID Values from tables that 5098 utilise such sizes, each pair of ID Values is encoded by multiplying the earlier ID of the pair by the

5104

5105

5106

5111 5112

5113

base specified in the fourth column of Table I-5-5 and adding the later ID of the pair, and encoding the result in the number of bits specified in the fourth column. If there is a trailing single ID Value for this ID Table, it is encoded in the number of bits specified in the third column of the table below.

5102 **Table I-6** Defined ID Value sizes

ID Size Bit pattern	Maximum number of Table Entries	Number of Bits per single or trailing ID Value, and how encoded	Number of Bits per pair of ID Values, and how encoded
000	Up to 16	4, as 1 Base 16 value	8, as 2 Base 16 values
001	Up to 22	5, as 1 Base 22 value	9, as 2 Base 22 values
010	Up to 32	5, as 1 Base 32 value	10, as 2 Base 32 values
011	Up to 45	6, as 1 Base 45 value	11, as 2 Base 45 values
100	Up to 64	6, as 1 Base 64 value	12, as 2 Base 64 values
101	Up to 90	7, as 1 Base 90 value	13, as 2 Base 90 values
110	Up to 128	7, as 1 Base 128 value	14, as 2 Base 128 values
1110	Up to 256	8, as 1 Base 256 value	16, as 2 Base 256 values
111100	Up to 512	9, as 1 Base 512 value	18, as 2 Base 512 values
111101	Up to 1024	10, as 1 Base 1024 value	20, as 2 Base 1024 values
111110	Up to 2048	11, as 1 Base 2048 value	22, as 2 Base 2048 values
111111	Up to 4096	12, as 1 Base 4096 value	24, as 2 Base 4096 values

5103 **I.5.3.1 Application indicator subsection**

- An Application Indicator subsection can be utilised to indicate use of ID Values from a default or non-default ID Table. This subsection is required in every IDMPO, but is only required in an IDLPO that uses the non-default format supporting multiple ID Lists.
- 5107 An Application Indicator consists of the following components:
- 5108A single AppIndicatorPresent bit, which if '0' means that no additional ID List or Map follows.5109Note that this bit is always omitted for the first List or Map in an Object Info section. When this5110bit is present and '0', then none of the following bit fields are encoded.
 - A single ExternalReg bit that, if '1', indicates use of an ID Table from a registration other than the memory's default. If '1', this bit is immediately followed by a 9-bit representation of a Data Format registered under ISO/IEC 15961.
- An ID Size pattern which denotes a table size (and therefore an ID Map bit length, when used in an IDMPO), which shall be one of the patterns defined by <u>Table 1-5</u>. The table size indicated in this field must be less than or equal to the table size indicated in the selected ID table. The purpose of this field is so that the decoder can parse past the ID List or ID Map, even if the ID Table is not available to the decoder.
- A three-bit ID Subset pattern. The registered data format's Primary Base ID Table, if used by the current Packed Object, shall always be indicated by an encoded ID Subset pattern of '000'.
 However, up to seven Alternate Base Tables may also be defined in the registration (with varying ID Sizes), and a choice from among these can be indicated by the encoded Subset pattern. This feature can be useful to define smaller sector-specific or application-specific subsets of a full data system, thus substantially reducing the size of the encoded ID Map.

5125 I.5.3.2 Full/Restricted Use bits

5126When contemplating the use of new ID Table registrations, or registrations for external data5127systems, application designers may utilise a "restricted use" encoding option that adds some5128overhead to a Packed Object but in exchange results in a format that can be fully decoded by5129receiving systems not in possession of the new or external ID table. With the exception of a IDLPO5130using the default Object Info format, one Full/Restricted Use bit is encoded immediately after each5131ID table is represented in the ID Map section or ID Lists section of a Data or Directory Packed

5134

Object. In a Directory Packed Object, this bit shall always be set to '0' and its value ignored. If an encoder wishes to utilise the "restricted use" option in an IDLPO, it shall preface the IDLPO with a Format Flags section invoking the non-default Object Info format.

5135If a "Full/Restricted Use" bit is '0' then the encoding of data strings from the corresponding5136registered ID Table makes full use of the ID Table's IDstring and FormatString information. If the bit5137is '1', then this signifies that some encoding overhead was added to the Secondary ID section and5138(in the case of Packed-Object compaction) the Aux Format section, so that a decoder without access5139to the table can nonetheless output OIDs and data from the Packed Object according to the scheme5140specified in J.4.1. Specifically, a Full/Restricted Use bit set to '1' indicates that:

- 5141for each encoded ID Value, the encoder added an EBV-3 indicator to the Secondary ID section,5142to indicate how many Secondary ID bits were invoked by that ID Value. If the EBV-3 is nonzero,5143then the Secondary ID bits (as indicated by the table entry) immediately follow, followed in turn5144by another EBV-3, until the entire list of ID Values has been represented.
- 5145•the encoder did not take advantage of the information from the referenced table's FormatString
column. Instead, corresponding to each ID Value, the encoder inserted an EBV-3 into the Aux
Format section, indicating the number of discrete data string lengths invoked by the ID Value
(which could be more than one due to combinations and/or optional components), followed by
the indicated number of string lengths, each length encoded as though there were no
FormatString in the ID table. All data items were encoded in the A/N subsection of the Data
section.

5152 I.5.4 ID Values representation in an ID Value-list Packed Object

5153 Each ID Value is represented within an IDLPO on a list of bit fields; the number of bit fields on the 5154 list is determined from the NumberOfIDs field (see Section <u>1.5.6.2</u>). Each ID Value bit field's length 5155 is in the range of four to eleven bits, depending on the size of the Base Table index it represents. In the optional non-default format for an IDLPO's Object Info section, a single Packed Object may 5156 contain multiple ID List subsections, each referencing a different ID Table. In this non-default 5157 5158 format, each ID List subsection consists of an Application Indicator subsection (which terminates the 5159 ID Lists, if it begins with a '0' bit), followed by an EBV-3 NumberOfIDs, an ID List, and a 5160 Full/Restricted Use flag.

5161 I.5.5 ID Values representation in an ID Map Packed Object

5162 Encoding an ID Map can be more efficient than encoding a list of ID Values, when representing a relatively large number of ID Values (constituting more than about 10 percent of a large Base 5163 5164 Table's entries, or about 25 percent of a small Base Table's entries). When encoded in an ID Map, 5165 each ID Value is represented by its relative position within the map (for example, the first ID Map bit represents ID Value "0", the third bit represents ID Value "2", and the last bit represents ID 5166 Value 'n' (corresponding to the last entry of a Base Table with (n+1) entries). The value of each bit 5167 5168 within an ID Map indicates whether the corresponding ID Value is present (if the bit is '1') or absent 5169 (if '0'). An ID Map is always encoded as part of an ID Map Section structure (see 1.9.1).

5170 I.5.6 Optional Addendum subsection of the Object Info section

- 5171The Packed Object Addendum feature supports basic editing operations, specifically the ability to5172add, delete, or replace individual data items in a previously-written Packed Object, without a need5173to rewrite the entire Packed Object. A Packed Object that does not contain an Addendum subsection5174cannot be edited in this fashion, and must be completely rewritten if changes are required.
- 5175 An Addendum subsection consists of a Reverse Links bit, followed by a Child bit, followed by either 5176 one or two EBV-6 links. Links from a Data Packed Object shall only go to other Data Packed Objects 5177 as addenda; links from a Directory Packed Object shall only go to other Directory Packed Objects as 5178 addenda. The standard Packed Object structure rules apply, with some restrictions that are 5179 described in <u>1.5.6.2</u>.
- 5180The Reverse Links bit shall be set identically in every Packed Object of the same "chain." The5181Reverse Links bit is defined as follows:
- 5182If the Reverse Links bit is '0', then each child in this chain of Packed Objects is at a higher5183memory location then its parent. The link to a Child is encoded as the number of octets (plus

5184 5185 5186	one) that are in between the last octet of the current Packed Object and the first octet of the Child. The link to the parent is encoded as the number of octets (plus one) that are in between the first octet of the parent Packed Object and the first octet of the current Packed Object.
5187 5188 5189 5190 5191	If the Reverse Links bit is '1', then each child in this chain of Packed Objects is at a lower memory location then its parent. The link to a Child is encoded as the number of octets (plus one) that are in between the first octet of the current Packed Object and the first octet of the Child. The link to the parent is encoded as the number of octets (plus one) that are in between the current Packed Object and the first octet of the parent.
5192	The Child bit is defined as follows:
5193 5194 5195	If the Child bit is a '0', then this Packed Object is an editable "Parentless" Packed Object (i.e., the first of a chain), and in this case the Child bit is immediately followed by a single EBV-6 link to the first "child" Packed Object that contains editing addenda for the parent.
5196 5197 5198	If the Child bit is a '1', then this Packed Object is an editable "child" of an edited "parent," and the bit is immediately followed by one EBV-6 link to the "parent" and a second EBV-6 line to the next "child" Packed Object that contains editing addenda for the parent.
5199 5200 5201 5202 5203 5204	A link value of zero is a Null pointer (no child exists), and in a Packed Object whose Child bit is '0', this indicates that the Packed Object is editable, but has not yet been edited. A link to the Parent is provided, so that a Directory may indicate the presence and location of an ID Value in an Addendum Packed Object, while still providing an interrogator with the ability to efficiently locate the other ID Values that are logically associated with the original "parent" Packed Object. A link value of zero is invalid as a pointer towards a Parent.
5205 5206 5207	In order to allow room for a sufficiently-large link, when the future location of the next "child" is unknown at the time the parent is encoded, it is permissible to use the "redundant" form of the EBV-6 (for example using "100000 000000" to represent a link value of zero).
5208	1.5.6.1 Addendum "EditingOP" list (only in ID List Packed Objects)
5209 5210 5211 5212	In an IDLPO only, each Addendum section of a "child" ID List Packed Object contains a set of "EditingOp" bits encoded immediately after its last EBV-6 link. The number of such bits is determined from the number of entries on the Addendum Packed Object's ID list. For each ID Value on this list, the corresponding EditingOp bit or bits are defined as follows:
5213 5214 5215 5216	 '1' means that the corresponding Fully-Qualified ID Value (FQIDV) is Replaced. A Replace operation has the effect that the data originally associated with the FQIDV matching the FQIDV in this Addendum Packed Object shall be ignored, and logically replaced by the Aux Format bits and data encoded in this Addendum Packed Object)
5217 5218 5219	 '00' means that the corresponding FQIDV is Deleted but not replaced. In this case, neither the Aux Format bits nor the data associated with this ID Value are encoded in the Addendum Packed Object.
5220 5221 5222	 '01' means that the corresponding FQIDV is Added (either this FQIDV was not previously encoded, or it was previously deleted without replacement). In this case, the associated Aux Format Bits and data shall be encoded in the Addendum Packed Object.
5223 5224 5225 5226	Note: If an application requests several "edit" operations at once (including some Delete or Replace operations as well as Adds) then implementations can achieve more efficient encoding if the Adds share the Addendum overhead, rather than being implemented in a new Packed Object.
5227	1.5.6.2 Packed Objects containing an addendum subsection
5228 5229	A Packed Object containing an Addendum subsection is otherwise identical in structure to other Packed Objects. However, the following observations apply:
5230 5231 5232 5233	A "parentless" Packed Object (the first in a chain) may be either an ID List Packed Object or an ID Map Packed Object (and a parentless IDMPO may be either a Data or Directory IDMPO). When a "parentless" PO is a directory, only directory IDMPOs may be used as addenda. A Directory IDMPO's Map bits shall be updated to correctly reflect the end state of the chain of

5243

5244

5245

5246

5247

5248

5249

5234additions and deletions to the memory bank; an Addendum to the Directory is not utilised to5235perform this maintenance (a Directory Addendum may only add new structural components, as5236described later in this section). In contrast, when the edited parentless object is an ID List5237Packed Object or ID Map Packed Object, its ID List or ID Map cannot be updated to reflect the5238end state of the aggregate Object (parents plus children).

- Although a "child" may be either an ID List or an ID Map Packed Object, only an IDLPO can
 indicate deletions or changes to the current set of fully-qualified ID Values and associated data
 that is embodied in the chain.
 - When a child is an IDMPO, it shall only be utilised to add (not delete or modify) structural information, and shall not be used to modify existing information. In a Directory chain, a child IDMPO may add new ID tables, or may add a new AuxMap section or subsections, or may extend an existing PO Index Table or ObjectOffsets list. In a Data chain, an IDMPO shall not be used as an Addendum, except to add new ID Tables.
 - When a child is an IDLPO, its ID list (followed by "EditingOp" bits) lists only those FQIDVs that have been deleted, added, or replaced, relative to the cumulative ID list from the prior Objects linked to it.

5250 I.6 Secondary ID Bits section

5251The Packed Objects design requirements include a requirement that all of the data system5252Identifiers (AI's, DI's, etc.) encoded in a Packed Object's can be fully recognised without expanding5253the compressed data, even though some ID Values provide only a partially-qualified Identifier. As a5254result, if any of the ID Values invoke Secondary ID bits, the Object Info section shall be followed by5255a Secondary ID Bits section. Examples include a four-bit field to identify the third digit of a group of5256related Logistics AIs.

5257 Secondary ID bits can be invoked for several reasons, as needed in order to fully specify Identifiers. For example, a single ID Table entry's ID Value may specify a choice between two similar identifiers 5258 (requiring one encoded bit to select one of the two IDs at the time of encoding), or may specify a 5259 combination of required and optional identifiers (requiring one encoded bit to enable or disable each 5260 option). The available mechanisms are described in Annex J. All resulting Secondary ID bit fields are 5261 concatenated in this Secondary ID Bits section, in the same order as the ID Values that invoked 5262 5263 them were listed within the Packed Object. Note that the Secondary ID Bits section is identically defined, whether the Packed Object is an IDLPO or an IDMPO, but is not present in a Directory 5264 IDMPO. 5265

5266 I.7 Aux Format section

5267The Aux Format section of a Data Packed Object encodes auxiliary information for the decoding5268process. A Directory Packed Object does not contain an Aux Format section. In a Data Packed5269Object, the Aux Format section begins with "Compact-Parameter" bits as defined in the table below.

5270 **Table I-7** Compact-Parameter bit patterns

Bit Pattern	Compaction method used in this Packed Object	Reference
'1'	"Packed-Object" compaction	See <u>1.7.2</u>
'000'	"Application-Defined", as defined for the No-Directory access method	See <u>1.7.1</u>
'001'	"Compact", as defined for the No-Directory access method	See <u>1.7.1</u>
'010'	"UTF-8", as defined for the No-Directory access method	See <u>1.7.1</u>
'011bbbb'	('bbbb' shall be in the range of 414): reserved for future definition	See <u>1.7.1</u>

5271 5272 5273 If the Compact-Parameter bit pattern is '1', then the remainder of the Aux Format section is encoded as described in <u>1.7.2</u>; otherwise, the remainder of the Aux Format section is encoded as described in <u>1.7.1</u>.

5287

5312

5313

5314 5315

5316

5317 5318

5319

5322

5323

5274 I.7.1 Support for No-Directory compaction methods

5275If any of the No-Directory compaction methods were selected by the Compact-Parameter bits, then5276the Compact-Parameter bits are followed by an byte-alignment padding pattern consisting of zero or5277more '0' bits followed by a single '1' bit, so that the next bit after the '1' is aligned as the most-5278significant bit of the next byte.

5279This next byte is defined as the first octet of a "No-Directory Data section", which is used in place of5280the Data section described in I.8. The data strings of this Packed Object are encoded in the order5281indicated by the Object Info section of the Packed Object, compacted exactly as described in Annex5282D of [ISO15962] (Encoding rules for No-Directory Access-Method), with the following two5283exceptions:

- 5284 The Object-Identifier is not encoded in the "No-Directory Data section", because it has already 5285 been encoded into the Object Info and Secondary ID sections.
 - The Precursor is modified in that only the three Compaction Type Code bits are significant, and the other bits in the Precursor are set to '0'.

5288 Therefore, each of the data strings invoked by the ID Table entry are separately encoded in a 5289 modified data set structure as:

- 5290 <modified precursor> <length of compacted object> <compacted object octets>
- 5291The <compacted object octets> are determined and encoded as described in D.1.1 and D.1.2 of5292[ISO15962] and the <length of compacted object> is determined and encoded as described in D.25293of [ISO15962].
- 5294 Following the last data set, a terminating precursor value of zero shall not be encoded (the decoding 5295 system recognises the end of the data using the encoded ObjectLength of the Packed Object).

5296 I.7.2 Support for the packed-object compaction method

5297If the Packed-Object compaction method was selected by the Compact-Parameter bits, then the5298Compact-Parameter bits are followed by zero or more Aux Format bits, as may be invoked by the ID5299Table entries used in this Packed Object. The Aux Format bits are then immediately followed by a5300Data section that uses the Packed-Object compaction method described in 1.8.

5301An ID Table entry that was designed for use with the Packed-Object compaction method can call for5302various types of auxiliary information beyond the complete indication of the ID itself (such as bit5303fields to indicate a variable data length, to aid the data compaction process). All such bit fields are5304concatenated in this portion, in the order called for by the ID List or Map. Note that the Aux Format5305section is identically defined, whether the Packed Object is an IDLPO or an IDMPO.

5306An ID Table entry invokes Aux Format length bits for all entries that are not specified as fixed-length5307in the table (however, these length bits are not actually encoded if they correspond to the last data5308item encoded in the A/N subsection of a Packed Object). This information allows the decoding5309system to parse the decoded data into strings of the appropriate lengths. An encoded Aux Format5310length entry utilises a variable number of bits, determined from the specified range between the5311shortest and longest data strings allowed for the data item, as follows:

- If a maximum length is specified, and the specified range (defined as the maximum length minus the minimum length) is less than eight, or greater than 44, then lengths in this range are encoded in the fewest number of bits that can express lengths within that range, and an encoded value of zero represents the minimum length specified in the format string. For example, if the range is specified as from three to six characters, then lengths are encoded using two bits, and '00' represents a length of three.
 - Otherwise (including the case of an unspecified maximum length), the value (actual length specified minimum) is encoded in a variable number of bits, as follows:
- 5320Values from 0 to 14 (representing lengths from 1 to 15, if the specified minimum length is one
character, for example) are encoded in four bits
 - Values from 15 to 29 are encoded in eight bits (a prefix of '1111' followed by four bits representing values from 15 ('0000') to 29 ('1110')

5343

5324 5325		 Values from 30 to 44 are encoded in twelve bits (a prefix of '1111 1111' followed by four bits representing values from 30 ('0000') to 44 ('1110')
5326 5327		 Values greater than 44 are encoded as a twelve-bit prefix of all '1's, followed by an EBV-6 indication of (value – 44).
5328		Notes:
5329 5330		if a range is specified with identical upper and lower bounds (i.e., a range of zero), this is treated as a fixed length, not a variable length, and no Aux Format bits are invoked.
5331 5332		 If a range is unspecified, or has unspecified upper or lower bounds, then this is treated as a default lower bound of one, and/or an unlimited upper bound.
5333	1.8	Data section
5334		A Data section is always present in a Packed Object, except in the case of a Directory Packed Object
5335		or Directory Addendum Packed Object (which encode no data elements), the case of a Data
5336 5337		Addendum Packed Object containing only Delete operations, and the case of a Packed Object that
5338		uses No-directory compaction (see <u>1.7.1</u>). When a Data section is present, it follows the Object Info section (and the Secondary ID and Aux Format sections, if present). Depending on the
5339		characteristics of the encoded IDs and data strings, the Data section may include one or both of two
5340		subsections in the following order: a Known-Length Numerics subsection, and an AlphaNumerics
5341		subsection. The following paragraphs provide detailed descriptions of each of these Data Section
0011		subsection. The renewing paragraphs previae actaned descriptions of each of these bata occition

5344 **Table I-8** Maximum Structure of a Packed Objects Data section

Known-Length Numeric subsection			AlphaNumeric subsection								
			A/N Header Bits				Binary Data Segments				
1 st KLN Binary	2 nd KLN Binary		Last KLN Binary	Non- Num Base Bit(s)	Prefix Bit, Prefix Run(s)	Suffix Bit, Suffix Run(s)	Char Map	Ext'd. Num Binary	Ext'd Non- Num Binary	Base 10 Binary	Non- Num Binary

subsections. If all of the subsections of the Data section are utilised in a Packed Object, then the

5345 I.8.1 Known-length-Numerics subsection of the data section

layout of the Data section is as shown in the table below.

5346For always-numeric data strings, the ID table may indicate a fixed number of digits (this fixed-5347length information is not encoded in the Packed Object) and/or a variable number of digits (in which5348case the string's length was encoded in the Aux Format section, as described above). When a single5349data item is specified in the FormatString column (see J.2.3) as containing a fixed-length numeric5350string followed by a variable-length string, the numeric string is encoded in the Known-length-5351numerics subsection and the alphanumeric string in the Alphanumeric subsection.

5352 The summation of fixed-length information (derived directly from the ID table) plus variable-length information (derived from encoded bits as just described) results in a "known-length entry" for each 5353 5354 of the always-numeric strings encoded in the current Packed Object. Each all-numeric data string in 5355 a Packed Object (if described as all-numeric in the ID Table) is encoded by converting the digit 5356 string into a single Binary number (up to 160 bits, representing a binary value between 0 and (10⁴⁸-1)). Figure K-1 in Annex <u>K</u> shows the number of bits required to represent a given number of digits. 5357 5358 If an all-numeric string contains more than 48 digits, then the first 48 are encoded as one 160-bit 5359 group, followed by the next group of up to 48 digits, and so on. Finally, the Binary values for each 5360 all-numeric data string in the Object are themselves concatenated to form the Known-length-5361 Numerics subsection.

5362 I.8.2 Alphanumeric subsection of the data section

5363The Alphanumeric (A/N) subsection, if present, encodes all of the Packed Object's data from any5364data strings that were not already encoded in the Known-length Numerics subsection. If there are5365no alphanumeric characters to encode, the entire A/N subsection is omitted. The Alphanumeric5366subsection can encode any mix of digits and non-digit ASCII characters, or eight-bit data. The digit

5367	characters within this data are encoded separately, at an average efficiency of 4.322 bits per digit or
5368	better, depending on the character sequence. The non-digit characters are independently encoded
5369	at an average efficiency that varies between 5.91 bits per character or better (all uppercase letters),
5370	to a worst-case limit of 9 bits per character (if the character mix requires Base 256 encoding of non-
5371	numeric characters).

5372An Alphanumeric subsection consists of a series of A/N Header bits (see 1.8.2.1), followed by from5373one to four Binary segments (each segment representing data encoded in a single numerical Base,5374such as Base 10 or Base 30, see 1.8.2.4), padded if necessary to complete the final byte (see I53758.2.5).

5376 I.8.2.1 A/N Header Bits

- 5377 The A/N Header Bits are defined as follows: 5378 One or two Non-Numeric Base bits, as follows: 5379 '0' indicates that Base 30 was chosen for the non-numeric Base; '10' indicates that Base 74 was chosen for the non-numeric Base: 5380 '11' indicates that Base 256 was chosen for the non-numeric Base 5381 5382 Either a single '0' bit (indicating that no Character Map Prefix is encoded), or a '1' bit followed 5383 by one or more "Runs" of six Prefix bits as defined in 1.8.2.3. Either a single '0' bit (indicating that no Character Map Suffix is encoded), or a '1' bit followed 5384 5385 by one or more "Runs" of six Suffix bits as defined in I.8.2.3.
 - 5386A variable-length "Character Map" bit pattern (see I.8.2.2), representing the base of each of the
data characters, if any, that were not accounted for by a Prefix or Suffix.

5388 I.8.2.2 Dual-base Character-map encoding

- 5389 Compaction of the ordered list of alphanumeric data strings (excluding those data strings already 5390 encoded in the Known-Length Numerics subsection) is achieved by first concatenating the data characters into a single data string (the individual string lengths have already been recorded in the 5391 5392 Aux Format section). Each of the data characters is classified as either Base 10 (for numeric digits), Base 30 non-numerics (primarily uppercase A-Z), Base 74 non-numerics (which includes both 5393 uppercase and lowercase alphas, and other ASCII characters), or Base 256 characters. These 5394 5395 character sets are fully defined in Annex K. All characters from the Base 74 set are also accessible 5396 from Base 30 via the use of an extra "shift" value (as are most of the lower 128 characters in the 5397 Base 256 set). Depending on the relative percentage of "native" Base 30 values vs. other values in 5398 the data string, one of those bases is selected as the more efficient choice for a non-numeric base.
- 5399Next, the precise sequence of numeric and non-numeric characters is recorded and encoded, using5400a variable-length bit pattern, called a "character map," where each '0' represents a Base 10 value5401(encoding a digit) and each '1' represents a value for a non-numeric character (in the selected5402base). Note that, (for example) if Base 30 encoding was selected, each data character (other than5403uppercase letters and the space character) needs to be represented by a pair of base-30 values, and5404thus each such data character is represented by a pair of '1' bits in the character map.

5405 I.8.2.3 Prefix and Suffix Run-Length encoding

- 5406For improved efficiency in cases where the concatenated sequence includes runs of six or more5407values from the same base, provision is made for optional run-length representations of one or5408more Prefix or Suffix "Runs" (single-base character sequences), which can replace the first and/or5409last portions of the character map. The encoder shall not create a Run that separates a Shift value5410from its next (shifted) value, and thus a Run always represents an integral number of source5411characters.
- 5412An optional Prefix Representation, if present, consists of one or more occurrences of a Prefix Run.5413Each Prefix Run consists of one Run Position bit, followed by two Basis Bits, then followed by three5414Run Length bits, defined as follows:

5417 5418

5419

5420

5421

5422

5423 5424

5425

5426

- The Run Position bit, if '0', indicates that at least one more Prefix Run is encoded following this one (representing another set of source characters to the right of the current set). The Run Position bit, if '1', indicates that the current Prefix Run is the last (rightmost) Prefix Run of the A/N subsection.
- The first basis bit indicates a choice of numeric vs. non-numeric base, and the second basis bit, if '1', indicates that the chosen base is extended to include characters from the "opposite" base. Thus, '00' indicates a run-length-encoded sequence of base 10 values; '01' indicates a sequence that is primarily (but not entirely) digits, encoded in Base 13; '10' indicates a sequence a sequence of values from the non-numeric base that was selected earlier in the A/N header, and '11' indicates a sequence of values primarily from that non-numeric base, but extended to include digit characters as well. Note an exception: if the non-numeric base that was selected in the A/N header is Base 256, then the "extended" version is defined to be Base 40.
- The 3-bit Run Length value assumes a minimum useable run of six same-base characters, and the length value is further divided by 2. Thus, the possible 3-bit Run Length values of 0, 1, 2, ...
 7 indicate a Run of 6, 8, 10, ... 20 characters from the same base. Note that a trailing "odd" character value at the end of a same-base sequence must be represented by adding a bit to the Character Map.
- 5432An optional Suffix Representation, if present, is a series of one or more Suffix Runs, each identical in5433format to the Prefix Run just described. Consistent with that description, note that the Run Position5434bit, if '1', indicates that the current Suffix Run is the last (rightmost) Suffix Run of the A/N5435subsection, and thus any preceding Suffix Runs represented source characters to the left of this final5436Suffix Run.

5437 **I.8.2.4 Encoding into Binary Segments**

- 5438 Immediately after the last bit of the Character Map, up to four binary numbers are encoded, each representing all of the characters that were encoded in a single base system. First, a base-13 bit 5439 sequence is encoded (if one or more Prefix or Suffix Runs called for base-13 encoding). If present, 5440 5441 this bit sequence directly represents the binary number resulting from encoding the combined 5442 sequence of all Prefix and Suffix characters (in that order) classified as Base 13 (ignoring any intervening characters not thus classified) as a single value, or in other words, applying a base 13 to 5443 5444 Binary conversion. The number of bits to encode in this sequence is directly determined from the number of base-13 values being represented, as called for by the sum of the Prefix and Suffix Run 5445 lengths for base 13 sequences. The number of bits, for a given number of Base 13 values, is 5446 5447 determined from the Figure in Annex K. Next, an Extended-NonNumeric Base segment (either Base-5448 40 or Base 84) is similarly encoded (if any Prefix or Suffix Runs called for Extended-NonNumeric 5449 encoding).
- 5450Next, a Base-10 Binary segment is encoded that directly represents the binary number resulting5451from encoding the sequence of the digits in the Prefix and/or character map and/or Suffix (ignoring5452any intervening non-digit characters) as a single value, or in other words, applying a base 10 to5453Binary conversion. The number of bits to encode in this sequence is directly determined from the5454number of digits being represented, as shown in Annex <u>K</u>.
- 5455 Immediately after the last bit of the Base-10 bit sequence (if any), a non-numeric (Base 30, Base 5456 74, or Base 256) bit sequence is encoded (if the character map indicates at least one non-numeric character). This bit sequence represents the binary number resulting from a base-30 to Binary 5457 conversion (or a Base-74 to Binary conversion, or a direct transfer of Base-256 values) of the 5458 sequence of non-digit characters in the data (ignoring any intervening digits). Again, the number of 5459 5460 encoded bits is directly determined from the number of non-numeric values being represented, as shown in Annex K. Note that if Base 256 was selected as the non-Numeric base, then the encoder is 5461 5462 free to classify and encode each digit either as Base 10 or as Base 256 (Base 10 will be more 5463 efficient, unless outweighed by the ability to take advantage of a long Prefix or Suffix).
- 5464Note that an Alphanumeric subsection ends with several variable-length bit fields (the character5465map, and one or more Binary sections (representing the numeric and non-numeric Binary values).5466Note further that none of the lengths of these three variable-length bit fields are explicitly encoded5467(although one or two Extended-Base Binary segments may also be present, these have known5468lengths, determined from Prefix and/or Suffix runs). In order to determine the boundaries between5469these three variable-length fields, the decoder needs to implement a procedure, using knowledge of

5501

5502

5503

5504

5505

- 5470
 - the remaining number of data bits, in order to correctly parse the Alphanumeric subsection. An example of such a procedure is described in Annex M.

5472 I.8.2.5 Padding the last Byte

5473 The last (least-significant) bit of the final Binary segment is also the last significant bit of the Packed Object. If there are any remaining bit positions in the last byte to be filled with pad bits, then the 5474 most significant pad bit shall be set to '1', and any remaining less-significant pad bits shall be set to 5475 '0'. The decoder can determine the total number of non-pad bits in a Packed Object by examining 5476 the Length Section of the Packed Object (and if the Pad Indicator bit of that section is '1', by also 5477 5478 examining the last byte of the Packed Object).

1.9 **ID** Map and Directory encoding options 5479

5480 An ID Map can be more efficient than a list of ID Values, when encoding a relatively large number of ID Values. Additionally, an ID Map representation is advantageous for use in a Directory Packed 5481 5482 Object. The ID Map itself (the first major subsection of every ID Map section) is structured 5483 identically whether in a Data or Directory IDMPO, but a Directory IDMPO's ID Map section contains additional optional subsections. The structure of an ID Map section, containing one or more ID 5484 5485 Maps, is described in the section below, explained in terms of its usage in a Data IDMPO; 5486 subsequent sections explain the added structural elements in a Directory IDMPO.

1.9.1 **ID Map Section structure** 5487

- 5488 An IDMPO represents ID Values using a structure called an ID Map section, containing one or more 5489 ID Maps. Each ID Value encoded in a Data IDMPO is represented as a '1' bit within an ID Map bit field, whose fixed length is equal to the number of entries in the corresponding Base Table. 5490 Conversely, each '0' in the ID Map Field indicates the absence of the corresponding ID Value. Since 5491 5492 the total number of '1' bits within the ID Map Field equals the number of ID Values being 5493 represented, no explicit NumberOfIDs field is encoded. In order to implement the range of functionality made possible by this representation, the ID Map Section contains elements other than 5494 5495 the ID Map itself. If present, the optional ID Map Section immediately follows the leading pattern 5496 indicating an IDMPO (as was described in 1.4.2), and contains the following elements in the order 5497 listed below:
- 5498 An Application Indicator subsection (see 1.5.3.1)
- 5499 an ID Map bit field (whose length is determined from the ID Size in the Application Indicator)
- 5500 a Full/Restricted Use bit (see 1.5.3.2)
 - (the above sequence forms an ID Map, which may optionally repeat multiple times)
 - a Data/Directory indicator bit,
 - an optional AuxMap section (never present in a Data IDMPO), and
 - Closing Flag(s), consisting of an "Addendum Flag" bit. If '1', then an Addendum subsection is present at the end of the Object Info section (after the Object Length Information).

5506 These elements, shown in the table below as a maximum structure (every element is present), are described in each of the next subsections. 5507

5508 Table I-9 ID Map section

First ID Map		Optional additional ID Map(s)		Null App Indicator	Data/ Directory	(If directory) Optional	Closing Flag Bit(s)	
App Indicator	ID Map Bit Field (ends with F/R bit)	App Indicator	ID Map Field (ends with F/R bit)	(single zero bit)	Indicator Bit	AuxMap Section		
See <u>1.5.3.1</u>	See <u>1.9.1.1</u> and <u>1.5.3.2</u>	As previous	As previous	See <u>I.5.3.1</u>		See Table I- 12	Addendum Flag Bit	

5509 5510

5511

5512

5541

5542

When an ID Map section is encoded, it is always followed by an Object Length and Pad Indicator, and optionally followed by an Addendum subsection (all as have been previously defined), and then may be followed by any of the other sections defined for Packed Objects, except that a Directory IDMPO shall not include a Data section.

5513 I.9.1.1 ID Map and ID Map bit field

- 5514 An ID Map usually consists of an Application Indicator followed by an ID Map bit field, ending with a 5515 Full/Restricted Use bit. An ID Map bit field consists of a single "MapPresent" flag bit, then (if 5516 MapPresent is '1') a number of bits equal to the length determined from the ID Size pattern within the Application Indicator, plus one (the Full/Restricted Use bit). The ID Map bit field indicates the 5517 presence/absence of encoded data items corresponding to entries in a specific registered Primary or 5518 5519 Alternate Base Table. The choice of base table is indicated by the encoded combination of DSFID 5520 and Application Indicator pattern that precedes the ID Map bit field. The MSB of the ID Map bit field 5521 corresponds to ID Value 0 in the base table, the next bit corresponds to ID Value 1, and so on.
- 5522 In a Data Packed Object's ID Map bit field, each '1' bit indicates that this Packed Object contains an encoded occurrence of the data item corresponding to an entry in the registered Base Table 5523 associated with this ID Map. Note that the valid encoded entry may be found either in the first 5524 ("parentless") Packed Object of the chain (the one containing the ID Map) or in an Addendum IDLPO 5525 of that chain. Note further that one or more data entries may be encoded in an IDMPO, but marked 5526 5527 "invalid" (by a Delete entry in an Addendum IDLPO).
- An ID Map shall not correspond to a Secondary ID Table instead of a Base ID Table. Note that data 5528 items encoded in a "parentless" Data IDMPO shall appear in the same relative order in which they 5529 5530 are listed in the associated Base Table. However, additional "out of order" data items may be added 5531 to an existing data IDMPO by appending an Addendum IDLPO to the Object.
- 5532 An ID Map cannot indicate a specific number of instances (greater than one) of the same ID Value, 5533 and this would seemingly imply that only one data instance using a given ID Value can be encoded in a Data IDMPO. However, the ID Map method needs to support the case where more two or more 5534 encoded data items are from the same identifier "class" (and thus share the same ID Value). The 5535 following mechanisms address this need: 5536
- 5537 Another data item of the same class can be encoded in an Addendum IDLPO of the IDMPO. 5538 Multiple occurrences of the same ID Value can appear on an ID List, each associated with 5539 different encoded values of the Secondary ID bits.
- 5540 A series of two or more encoded instances of the same "class" can be efficiently indicated by a single instance of an ID Value (or equivalently by a single ID Map bit), if the corresponding Base Table entry defines a "Repeat" Bit (see <u>J.2.2</u>).
- 5543 An ID Map section may contain multiple ID Maps; a null Application Indicator section (with its AppIndicatorPresent bit set to '0') terminates the list of ID Maps. 5544

1.9.1.2 Data/Directory and AuxMap indicator bits 5545

5546 A Data/Directory indicator bit is always encoded immediately following the last ID Map. By definition, a Data IDMPO has its Data/Directory bit set to '0', and a Directory IDMPO has its 5547

5548	Data/Directory bit set to '1'. If the Data/Directory bit is set to '1', it is immediately followed by an
5549	AuxMap indicator bit which, if '1', indicates that an optional AuxMap section immediately follows.

- 5550 Closing Flags bit(s)
- 5551 The ID Map section ends with a single Closing Flag:
- 5552The final bit of the Closing Flags is an Addendum Flag Bit which, if '1', indicates that there is an
optional Addendum subsection encoded at the end of the Object Info section of the Packed
Object. If present, the Addendum subsection is as described in Section <u>1.5.6</u>.

5555 I.9.2 Directory Packed Objects

5556A "Directory Packed Object" is an IDMPO whose Directory bit is set to '1'. Its only inherent5557difference from a Data IDMPO is that it does not contain any encoded data items. However,5558additional mechanisms and usage considerations apply only to a Directory Packed Object, and these5559are described in the following subsections.

5560 I.9.2.1 ID Maps in a Directory IDMPO

- 5561Although the structure of an ID Map is identical whether in a Data or Directory IDMPO, the5562semantics of the structure are somewhat different. In a Directory Packed Object's ID Map bit field,5563each '1' bit indicates that a Data Packed Object in the same data carrier memory bank contains a5564valid data item associated with the corresponding entry in the specified Base Table for this ID Map.5565Optionally, a Directory Packed Object may further indicate which Packed Object contains each data5566item (see the description of the optional AuxMap section below).
- 5567Note that, in contrast to a Data IDMPO, there is no required correlation between the order of bits in5568a Directory's ID Map and the order in which these data items are subsequently encoded in memory5569within a sequence of Data Packed Objects.

5570 I.9.2.2 Optional AuxMap Section (Directory IDMPOs only)

5571 An AuxMap Section optionally allows a Directory IDMPO's ID Map to indicate not only presence/absence of all the data items in this memory bank of the tag, but also which Packed 5572 5573 Object encodes each data item. If the AuxMap indicator bit is '1', then an AuxMap section shall be 5574 encoded immediately after this bit. If encoded, the AuxMap section shall contain one PO Index Field 5575 for each of the ID Maps that precede this section. After the last PO Index Field, the AuxMap Section 5576 may optionally encode an ObjectOffsets list, where each ObjectOffset generally indicates the number of bytes from the start of the previous Packed Object to the start of the next Packed Object. 5577 This AuxMap structure is shown (for an example IDMPO with two ID Maps) in the table below. 5578

5579 Table I-10 Optional AuxMap section structure

PO Index Field for first ID Map				Object Offsets	3 1 3					
POindex Length	POindex Table	POindex Length	POindex Table	Present bit	Object Offsets Multiplier	Object1 offset (EBV6)	Object2 offset (EBV6)		ObjectN offset (EBV6)	

Each PO Index Field has the following structure and semantics:

- A three-bit POindexLength field, indicating the number of index bits encoded for each entry in the PO Index Table that immediately follows this field (unless the POindex length is '000', which means that no PO Index Table follows).
- A PO Index Table, consisting of an array of bits, one bit (or group of bits, depending on the POIndexLength) for every bit in the corresponding ID Map of this directory Packed Object. A PO Index Table entry (i.e., a "PO Index") indicates (by relative order) which Packed Object contains the data item indicated by the corresponding '1' bit in the ID Map. If an ID Map bit is '0', the corresponding PO Index Table entry is present but its contents are ignored.

5589 5590 5591	•	Every Packed Object is assigned an index value in sequence, without regard as to whether it is a "parentless" Packed Object or a "child" of another Packed Object, or whether it is a Data or Directory Packed Object.
5592 5593	•	If the PO Index is within the first PO Index Table (for the associated ID Map) of the Directory "chain", then:
5594		a PO Index of zero refers to the first Packed Object in memory,
5595		a value of one refers to the next Packed Object in memory, and so on
5596 5597 5598 5599 5600 5601		a value of <i>m</i> , where <i>m</i> is the largest value that can be encoded in the PO Index (given the number of bits per index that was set in the POindexLength), indicates a Packed Object whose relative index (position in memory) is <i>m or higher</i> . This definition allows Packed Objects higher than <i>m</i> to be indexed in an Addendum Directory Packed Object, as described immediately below. If no Addendum exists, then the precise position is either <i>m</i> or some indeterminate position greater than <i>m</i> .
5602 5603	•	If the PO Index is not within the first PO Index Table of the directory chain for the associated ID Map (i.e., it is in an Addendum IDMPO), then:
5604 5605		 a PO Index of zero indicates that a prior PO Index Table of the chain provided the index information,
5606 5607 5608 5609		a PO Index of $n (n > 0)$ refers to the <i>nth</i> Packed Object above the highest index value available in the immediate parent directory PO; e.g., if the maximum index value in the immediate parent directory PO refers to PO number "3 or greater," then a PO index of 1 in this addendum refers to PO number 4.
5610 5611		• A PO Index of <i>m</i> (as defined above) similarly indicates a Packed Object whose position is the <i>mth</i> position, <i>or higher</i> , than the limit of the previous table in the chain.
5612 5613 5614 5615 5616	•	If the valid instance of an ID Value is in an Addendum Packed Object, an implementation may choose to set a PO Index to point directly to that Addendum, or may instead continue to point to the Packed Object in the chain that originally contained the ID Value. NOTE: The first approach sometimes leads to faster searching; the second sometimes leads to faster directory updates.
5617 5618 5619 5620 5621 5622	Pr€ thi "of Pa	er the last PO Index Field, the AuxMap section ends with (at minimum) a single "ObjectOffsets esent" bit. A'O' value of this bit indicates that no ObjectOffsets subsection is encoded. If instead s bit is a '1', it is immediately followed by an ObjectOffsets subsection, which holds a list of EBV-6 fsets" (the number of octets between the start of a Packed Object and the start of the next cked Object). If present, the ObjectOffsets subsection consists of an ObjectOffsetsMultiplier lowed by an Object Offsets list, defined as follows:
5623 5624 5625 5626 5627	•	An EBV-6 ObjectOffsetsMultiplier, whose value, when multiplied by 6, sets the total number of bits reserved for the entire ObjectOffsets list. The value of this multiplier should be selected to ideally result in sufficient storage to hold the offsets for the maximum number of Packed Objects that can be indexed by this Directory Packed Object's PO Index Table (given the value in the POIndexLength field, and given some estimated average size for those Packed Objects).
5628 5629 5630 5631 5632 5633 5634 5635 5636		a fixed-sized field containing a list of EBV-6 ObjectOffsets. The size of this field is exactly the number of bits as calculated from the ObjectOffsetsMultiplier. The first ObjectOffset represents the start of the second Packed Object in memory, relative to the first octet of memory (there would be little benefit in reserving extra space to store the offset of the <i>first</i> Packed Object). Each succeeding ObjectOffset indicates the start of the next Packed Object (relative to the previous ObjectOffset on the list), and the final ObjectOffset on the list points to the all-zero termination pattern where the <i>next</i> Packed Object may be written. An invalid offset of zero (EBV-6 pattern "000000") shall be used to terminate the ObjectOffset list. If the reserved storage space is fully occupied, it need not include this terminating pattern.
5637 5638 5639 5640 5641 5642 5643	1	In applications where the average Packed Object Length is difficult to predict, the reserved ObjectOffset storage space may sometimes prove to be insufficient. In this case, an Addendum Packed Object can be appended to the Directory Packed Object. This Addendum Directory Packed Object may contain null subsections for all but its ObjectOffsets subsection. Alternately, if it is anticipated that the capacity of the PO Index Table will also eventually be exceeded, then the Addendum Packed Object may also contain one or more non-null PO Index fields. Note that in a given instance of an AuxMap section, either a PO Index Table or an ObjectOffsets

5644subsection may be the first to exceed its capacity. Therefore, the first position referenced by an5645ObjectOffsets list in an Addendum Packed Object need not coincide with the first position5646referenced by the PO Index Table of that same Addendum. Specifically, in an Addendum Packed5647Object, the first ObjectOffset listed is an offset referenced to the last ObjectOffset on the list of5648the "parent" Directory Packed Object.

5649 **I.9.2.3 Usage as a Presence/Absence Directory**

- 5650 In many applications, an Interrogator may choose to read the entire contents of any data carrier containing one or more "target" data items of interest. In such applications, the positional 5651 information of those data items within the memory is not needed during the initial reading 5652 5653 operations; only a presence/absence indication is needed at this processing stage. An ID Map can 5654 form a particularly efficient Presence/Absence directory for denoting the contents of a data carrier in 5655 such applications. A full directory structure encodes the offset or address (memory location) of 5656 every data element within the data carrier, which requires the writing of a large number of bits 5657 (typically 32 bits or more per data item). Inevitably, such an approach also requires reading a large 5658 number of bits over the air, just to determine whether an identifier of interest is present on a particular tag. In contrast, when only presence/absence information is needed, using an ID Map 5659 conveys the same information using only one bit per data item defined in the data system. The 5660 entire ID Map can be typically represented in 128 bits or less, and stays the same size as more data 5661 items are written to the tag. 5662
- 5663A "Presence/Absence Directory" Packed Object is defined as a Directory IDMPO that does not5664contain a PO Index, and therefore provides no encoded information as to where individual data5665items reside within the data carrier. A Presence/Absence Directory can be converted to an "Indexed5666Directory" Packed Object (see I.9.2.4) by adding a PO Index in an Addendum Packed Object, as a5667"child" of the Presence/Absence Packed Object.

5668 **I.9.2.4 Usage as an Indexed Directory**

5669In many applications involving large memories, an Interrogator may choose to read a Directory5670section covering the entire memory's contents, and then issue subsequent Reads to fetch the5671"target" data items of interest. In such applications, the positional information of those data items5672within the memory is important, but if many data items are added to a large memory over time, the5673directory itself can grow to an undesirable size.

- 5674 An ID Map, used in conjunction with an AuxMap containing a PO Index, can form a particularlyefficient "Indexed Directory" for denoting the contents of an RFID tag, and their approximate 5675 5676 locations as well. Unlike a full tag directory structure, which encodes the offset or address (memory location) of every data element within the data carrier, an Indexed Directory encodes a small 5677 5678 relative position or index indicating which Packed Object contains each data element. An application 5679 designer may choose to also encode the locations of each Packed Object in an optional ObjectOffsets 5680 subsection as described above, so that a decoding system, upon reading the Indexed Directory alone, can calculate the start addresses of all Packed Objects in memory. 5681
- 5682 The utility of an ID Map used in this way is enhanced by the rule of most data systems that a given 5683 identifier may only appear once within a single data carrier. This rule, when an Indexed Directory is 5684 utilised with Packed Object encoding of the data in subsequent objects, can provide nearly-complete 5685 random access to reading data using relatively few directory bits. As an example, an ID Map directory (one bit per defined ID) can be associated with an additional AuxMap "PO Index" array 5686 5687 (using, for example, three bits per defined ID). Using this arrangement, an interrogator would read 5688 the Directory Packed Object, and examine its ID Map to determine if the desired data item were 5689 present on the tag. If so, it would examine the 3 "PO Index" bits corresponding to that data item, to 5690 determine which of the first 8 Packed Objects on the tag contain the desired data item. If an 5691 optional ObjectOffsets subsection was encoded, then the Interrogator can calculate the starting 5692 address of the desired Packed Object directly; otherwise, the interrogator may perform successive 5693 read operations in order to fetch the desired Packed Object.

Packed Objects ID tables 5694 . .

J.1 5695 Packed Objects data format registration file structure

5696 A Packed Objects registered Data Format file consists of a series of "Keyword lines" and one or more ID Tables. Blank lines may occur anywhere within a Data Format File, and are ignored. Also, any 5697 5698 line may end with extra blank columns, which are also ignored.

- A Keyword line consists of a Keyword (which always starts with "K-") followed by an equals sign 5700 and a character string, which assigns a value to that Keyword. Zero or more space characters may be present on either side of the equals sign. Some Keyword lines shall appear only once, at the top of the registration file, and others may appear multiple times, once for each ID Table in the file.
- 5704 An ID Table lists a series of ID Values (as defined in 1.5.3). Each row of an ID Table contains a 5705 single ID Value (in a required "IDvalue" column), and additional columns may associate Object 5706 IDs (OIDs), ID strings, Format strings, and other information with that ID Value. A registration 5707 file always includes a single "Primary" Base ID Table, zero or more "Alternate" Base ID Tables, 5708 and may also include one or more Secondary ID Tables (that are referenced by one or more 5709 Base ID Table entries).
- To illustrate the file format, a hypothetical data system registration is shown in Figure J-1. In this 5710 hypothetical data system, each ID Value is associated with one or more OIDs and corresponding ID 5711 strings. The following subsections explain the syntax shown in the Figure. 5712
- 5713

5699

5701

5702

5703

Figure J-1 Hypothetical Data Format registration file

K-Text = Hypothetical Data Format 100
K-Version = 1.0

K-TableID = F100B0

K-RootOID =

urn:oid:1.0.12345.100

K-IDsize =

1	6		

10				
IDvalue	OIDs	IDstring	Explanation	FormatString
0	99	1Z	Legacy ID "1Z" corresponds to OID 99, is assigned IDval 0	14n
1	9%x30-33	7%x42-45	An OID in the range 9093, Corresponding to ID 7B7E	1*8an
2	(10)(20)(25)(37)	(A)(B)(C)(D)	a commonly-used set of IDs	(1n)(2n)(3n)(4n)
3	26/27	1A/2B	Either 1A or 2B is encoded, but not both	10n / 20n
4	(30) [31]	(2A) [3B]	2A is always encoded, optionally followed by 3B	(11n) [1*20n]
5	(40/41/42) (53) [55]	(4A/4B/4C) (5D) [5E]	One of A/B/C is encoded, then D, and optionally E	(1n/2n/3n) (4n) [5n]
6	(60/61/(64)[66])	(6A /6B / (6C) [6D])	Selections, one of which includes an Option	(1n / 2n / (3n][4n])
K-TableEnd =	= F100B0			

5716 J.1.1 File Header section

5719

5720

5717 Keyword lines in the File Header (the first portion of every registration file) may occur in any order, 5718 and are as follows:

- (Mandatory) K-Version = nn.nn, which the registering body assigns, to ensure that any future revisions to their registration are clearly labelled.
- 5721(Optional) K-Interpretation = string, where the "string" argument shall be one of the5722following: "ISO-646", "UTF-8", "ECI-nnnnnn" (where nnnnnn is a registered six-digit ECI5723number), ISO-8859-nn, or "UNSPECIFIED". The Default interpretation is "UNSPECIFIED". This5724keyword line allows non-default interpretations to be placed on the octets of data strings that5725are decoded from Packed Objects.
- 5726 **(Optional) K-ISO15434=nn**, where "nn" represents a Format Indicator (a two-digit numeric 5727 identifier) as defined in ISO/IEC 15434. This keyword line allows receiving systems to optionally 5728 represent a decoded Packed Object as a fully-compliant ISO/IEC 15434 message. There is no 5729 default value for this keyword line.
- (Optional) K-AppPunc = nn, where nn represents (in decimal) the octet value of an ASCII character that is commonly used for punctuation in this application. If this keyword line is not present, the default Application Punctuation character is the hyphen.

5749

5750

5751

5752

5753

5754

5755

5733 In addition, h may be included using the optional Keyword assignment line "K-text = string", and

may appear zero or more times within a File Header or Table Header, but not in an ID Table body.

5735 J.1.2 Table Header section

5736One or more Table Header sections (each introducing an ID Table) follow the File Header section.5737Each Table Header begins with a K-TableID keyword line, followed by a series of additional required5738and optional Keyword lines (which may occur in any order), as follows:

- (Mandatory) K-TableID = FnnXnn, where Fnn represents the ISO-assigned Data Format number (where 'nn' represents one or more decimal digits), and Xnn (where 'X' is either 'B' or 'S') is a registrant-assigned Table ID for each ID Table in the file. The first ID Table shall always be the Primary Base ID Table of the registration, with a Table ID of "B0". As many as seven additional "Alternate" Base ID Tables may be included, with higher sequential "Bnn" Table IDs. Secondary ID Tables may be included, with sequential Table IDs of the form "Snn".
- 5745 (Mandatory) K-IDsize = nn. For a base ID table, the value nn shall be one of the values
 5746 from the "Maximum number of Table Entries" column of Table I 5-5. For a secondary ID table,
 5747 the value nn shall be a power of two (even if not present in Table I 5-5.
- 5748 (Optional) K-RootOID = urn:oid:i.j.k.ff where:
 - **I**, **j**, **and k** are the leading arcs of the OID (as many arcs as required) and
 - **ff** is the last arc of the Root OID (typically, the registered Data Format number)
 - If the K-RootOID keyword is not present, then the default Root OID is:
 - urn:oid:1.0.15961.ff, where "ff" is the registered Data Format number
 - Other optional Keyword lines: in order to override the file-level defaults (to set different values for a particular table), a Table Header may invoke one or more of the Optional Keyword lines listed in for the File Header section.
- 5756The end of the Table Header section is the first non-blank line that does not begin with a Keyword.5757This first non-blank line shall list the titles for every column in the ID Table that immediately follows5758this line; column titles are case-sensitive.
- 5759 An Alternate Base ID Table, if present, is identical in format to the Primary Base ID Table (but 5760 usually represents a smaller choice of identifiers, targeted for a specific application).
- 5761A Secondary ID Table can be invoked by a keyword in a Base Table's **OIDs** column. A Secondary ID5762Table is equivalent to a single Selection list (see <u>J.3</u>) for a single ID Value of a Base ID Table (except5763that a Secondary table uses K-Idsize to explicitly define the number of Secondary ID bits per ID);5764the IDvalue column of a Secondary table lists the value of the corresponding Secondary ID bits5765pattern for each row in the Secondary Table. An **OIDs** entry in a Secondary ID Table shall not itself5766contain a Selection list nor invoke another Secondary ID Table.

5767 J.1.3 ID Table section

- 5768Each ID table consists of a series of one or more rows, each row including a mandatory "IDvalue"5769column, several defined Optional columns (such as "OIDs", "IDstring", and "FormatString"), and any5770number of Informative columns (such as the "Explanation" column in the hypothetical example5771shown above).
- 5772 Each ID Table ends with a required Keyword line of the form:
- 5773 **K-TableEnd = FnnXnn**, where **FnnXnn** shall match the preceding **K-TableID** keyword line that introduced the table.
- 5775 The syntax and requirements of all Mandatory and Optional columns shall be as described J.2.

5776 J.2 Mandatory and pptional ID table columns

5777 Each ID Table in a Packed Objects registration shall include an IDvalue column, and may include 5778 other columns that are defined in this specification as Optional, and/or Informative columns (whose 5779 column heading is not defined in this specification).

5812 5813

5814

5815

5816

5817

5818

5819

5820

5821

5822

5823

5824

5825

5826 5827

5828

5829

5830

5831

5832 5833

5780 J.2.1 IDvalue column (Mandatory)

5781Each ID Table in a Packed Objects registration shall include an IDvalue column. The ID Values on5782successive rows shall increase monotonically. However, the table may terminate before reaching the5783full number of rows indicated by the Keyword line containing K-IDsize. In this case, a receiving5784system will assume that all remaining ID Values are reserved for future assignment (as if the OIDs5785column contained the keyword "K-RFA"). If a registered Base ID Table does not include the optional5786OIDs column described below, then the IDvalue shall be used as the last arc of the OID.

5787 J.2.2 OIDs and IDstring columns (Optional)

5788A Packed Objects registration always assigns a final OID arc to each identifier (either a number5789assigned in the "OIDs" column as will be described below, or if that column is absent, the IDvalue is5790assigned as the default final arc). The OIDs column is required rather than optional, if a single5791IDvalue is intended to represent either a combination of OIDs or a choice between OIDs (one or5792more Secondary ID bits are invoked by any entry that presents a choice of OIDs).

5793 A Packed Objects registration may include an IDString column, which if present assigns an ASCII-5794 string name for each OID. If no name is provided, systems must refer to the identifier by its OID (see <u>J.4</u>). However, many registrations will be based on data systems that do have an ASCII 5795 5796 representation for each defined Identifier, and receiving systems may optionally output a 5797 representation based on those strings. If so, the ID Table may contain a column indicating the 5798 IDstring that corresponds to each OID. An empty IDstring cell means that there is no corresponding 5799 ASCII string associated with the OID. A non-empty IDstring shall provide a name for every OID 5800 invoked by the OIDs column of that row (or a single name, if no OIDs column is present). Therefore, the sequence of combination and selection operations in an IDstring shall exactly match those in the 5801 row's OIDs column. 5802

- 5803A non-empty **OIDs** cell may contain either a keyword, an ASCII string representing (in decimal) a5804single OID value, or a compound string (in ABNF notation) that a defines a choice and/or a5805combination of OIDs. The detailed syntax for compound OID strings in this column (which also5806applies to the IDstring column) is as defined in section <u>J.3</u>. Instead of containing a simple or5807compound OID representation, an OIDs entry may contain one of the following Keywords:
- 5808K-Verbatim = OIDddBnn, where "dd" represents the chosen penultimate arc of the OID, and
"Bnn" indicates one of the Base 10, Base 40, or Base 74 encoding tables. This entry invokes a
number of Secondary ID bits that serve two purposes:
 - They encode an ASCII identifier "name" that might not have existed at the time the table was registered. The name is encoded in the Secondary ID bits section as a series of Base-n values representing the ASCII characters of the name, preceded by a four-bit field indicating the number of Base-n values that follow (zero is permissible, in order to support RFA entries as described below).
 - The cumulative value of these Secondary ID bits, considered as a single unsigned binary integer and converted to decimal, is the final "arc" of the OID for this "verbatim-encoded" identifier.
 - K-Secondary = Snn, where "Snn" represents the Table ID of a Secondary ID Table in the same registration file. This is equivalent to a Base ID Table row OID entry that contains a single Selection list (with no other components at the top level), but instead of listing these components in the Base ID Table, each component is listed as a separate row in the Secondary ID Table, where each may be assigned a unique OID, ID string, and FormatString.

 K-Proprietary=OIDddPnn, where nn represents a fixed number of Secondary ID bits that encode an optional Enterprise Identifier indicating who wrote the proprietary data (an entry of K-Proprietary=OIDddPO indicates an "anonymous" proprietary data item).

K-RFA = OIDddBnn, where "Bnn" is as defined above for Verbatim encoding, except that "B0" is a valid assignment (meaning that no Secondary ID bits are invoked). This keyword represents a Reserved for Future Assignment entry, with an option for Verbatim encoding of the Identifier "name" once a name is assigned by the entity who registered this Data Format. Encoders may use this entry, with a four-bit "verbatim" length of zero, until an Identifier "name" is assigned. A specific FormatString may be assigned to K-RFA entries, or the default a/n encoding may be utilised.

Finally, any OIDs entry may end with a single "R" character (preceded by one or more space characters), to indicate that a "Repeat" bit shall be encoded as the last Secondary ID bit invoked by the entry. If '1', this bit indicates that another instance of this class of identifier is also encoded (that is, this bit acts as if a repeat of the ID Value were encoded on an ID list). If '1', then this bit is followed by another series of Secondary ID bits, to represent the particulars of this additional instance of the ID Value.

5840An IDstring column shall not contain any of the above-listed Keyword entries, and an IDstring entry5841shall be empty when the corresponding OIDs entry contains a Keyword.

5842 J.2.3 FormatString column (Optional)

- 5843 An ID Table may optionally define the data characteristics of the data associated with a particular 5844 identifier, in order to facilitate data compaction. If present, the FormatString entry specifies whether 5845 a data item is all-numeric or alphanumeric (i.e., may contain characters other than the decimal digits), and specifies either a fixed length or a variable length. If no FormatString entry is present, 5846 5847 then the default data characteristic is alphanumeric. If no FormatString entry is present, or if the 5848 entry does not specify a length, then any length >=1 is permitted. Unless a single fixed length is specified, the length of each encoded data item is encoded in the Aux Format section of the Packed 5849 Object, as specified in 1.7. 5850
- 5851If a given IDstring entry defines more than a single identifier, then the corresponding FormatString5852column shall show a format string for each such identifier, using the same sequence of punctuation5853characters (disregarding concatenation) as was used in the corresponding IDstring.
- 5854 The format string for a single identifier shall be one of the following:
 - A length qualifier followed by "n" (for always-numeric data);
 - A length qualifier followed by "an" (for data that may contain non-digits); or
 - A fixed-length qualifier, followed by "n", followed by one or more space characters, followed by a variable-length qualifier, followed by "an".

5859A length qualifier shall be either null (that is, no qualifier present, indicating that any length >= 1 is5860legal), a single decimal number (indicating a fixed length) or a length range of the form "i*j", where5861"I" represents the minimum allowed length of the data item, "j" represents the maximum allowed5862length, and i <= j. In the latter case, if "j" is omitted, it means the maximum length is unlimited.</td>

- 5863 Data corresponding to an "n" in the FormatString are encoded in the KLN subsection; data 5864 corresponding to an "an" in the FormatString are encoded in the A/N subsection.
- 5865When a given instance of the data item is encoded in a Packed Object, its length is encoded in the5866Aux Format section as specified in <u>1.7.2</u>. The minimum value of the range is not itself encoded, but5867is specified in the ID Table's FormatString column.

5868 Example:

5855

5856

5857

5858

5869A FormatString entry of "3*6n" indicates an all-numeric data item whose length is always between5870three and six digits inclusive. A given length is encoded in two bits, where '00' would indicate a5871string of digits whose length is "3", and '11' would indicate a string length of six digits.

5872 J.2.4 Interp column (Optional)

- 5873Some registrations may wish to specify information needed for output representations of the Packed5874Object's contents, other than the default OID representation of the arcs of each encoded identifier.5875If this information is invariant for a particular table, the registration file may include keyword lines5876as previously defined. If the interpretation varies from row to row within a table, then an Interp5877column may be added to the ID Table. This column entry, if present, may contain one or more of5878the following keyword assignments (separated by semicolons), as were previously defined (see J.1.15879and J.1.2):
- 5880 K-RootOID = urn:oid:i.j.k.l...
- 5881 K-Interpretation = string
- 5882 K-ISO15434=nn

5883 If used, these override (for a particular Identifier) the default file-level values and/or those specified 5884 in the Table Header section.

5885 J.3 Syntax of OIDs, IDstring, and FormatString Columns

5886 5887 5888

5910

5911

5912

5913

5915

5916

5917

5918

5919

5920

5921

5922

5923 5924

5925

5926

5927

5928

5929

In a given ID Table entry, the OIDs, IDString, and FormatString column may indicate one or more mechanisms described in this section. <u>J.3.1</u> specifies the semantics of the mechanisms, and <u>J.3.2</u> specifies the formal grammar for the ID Table columns.

5889 J.3.1 Semantics for OIDs, IDString, and FormatString Columns

5890In the descriptions below, the word "Identifier" means either an OID final arc (in the context of the5891OIDs column) or an IDString name (in the context of the IDstring column). If both columns are5892present, only the OIDs column actually invokes Secondary ID bits.

- 5893 A Single component resolving to a single Identifier, in which case no additional Secondary ID bits are invoked.
- 5895 (For OIDs and IDString columns only) A single component resolving to one of a series of closely-5896 related Identifiers, where the Identifier's string representation varies only at one or more 5897 character positions. This is indicated using the *Concatenation* operator '%' to introduce a 5898 range of ASCII characters at a specified position. For example, an OID whose final arc is defined 5899 as "391n", where the fourth digit 'n' can be any digit from '0' to '6' (ASCII characters 30_{hex} to 36_{hex} inclusive) is represented by the component **391%x30-36** (note that no spaces are 5900 allowed) A Concatenation invokes the minimum number of Secondary ID digits needed to 5901 5902 indicate the specified range. When both an OIDs column and an IDstring column are populated 5903 for a given row, both shall contain the same number of concatations, with the same ranges (so 5904 that the numbers and values of Secondary ID bits invoked are consistent). However, the 5905 minimum value listed for the two ranges can differ, so that (for example) the OID's digit can 5906 range from 0 to 3, while the corresponding IDstring character can range from "B" to "E" if so 5907 desired. Note that the use of Concatenation inherently constrains the relationship between OID 5908 and IDString, and so Concatenation may not be useable under all circumstances (the Selection 5909 operation described below usually provides an alternative).
 - A *Combination* of two or more identifier components in an ordered sequence, indicated by surrounding each component of the sequence with parentheses. For example, an IDstring entry (A) (%x30-37B) (2C) indicates that the associated ID Value represents a sequence of the following three identifiers:
- 5914 Identifier "A", then
 - An identifier within the range "OB" to "7B" (invoking three Secondary ID bits to represent the choice of leading character), then
 - Identifier "2C

Note that a Combination does not itself invoke any Secondary ID bits (unless one or more of its components do).

- An **Optional** component is indicated by surrounding the component in brackets, which may viewed as a "conditional combination." For example the entry (A) [B][C][D] indicates that the ID Value represents identifier A, optionally followed by B, C, and/or D. A list of Options invokes one Secondary ID bit for each component in brackets, wherein a '1' indicates that the optional component was encoded.
- A *Selection* between several mutually-exclusive components is indicated by separating the components by forward slash characters. For example, the IDstring entry (A/B/C/(D)(E)) indicates that the fully-qualified ID Value represents a single choice from a list of four choices (the fourth of which is a Combination). A Selection invokes the minimum number of Secondary ID bits needed to indicate a choice from a list of the specified number of components.
- 5930In general, a "compound" OIDs or IDstring entry may contain any or all of the above operations.5931However, to ensure that a single left-to-right parsing of an OIDs entry results in a deterministic set5932of Secondary ID bits (which are encoded in the same left-to-right order in which they are invoked by5933the OIDs entry), the following restrictions are applied:

5934 5935		 A given Identifier may only appear once in an OIDs entry. For example, the entry (A)(B/A) is invalid
5936		 A OIDs entry may contain at most a single Selection list
5937		There is no restriction on the number of Combinations (because they invoke no Secondary ID bits)
5938 5939		 There is no restriction on the total number of Concatenations in an OIDs entry, but no single Component may contain more than two Concatenation operators.
5940 5941 5942		 An Optional component may be a component of a Selection list, but an Optional component may not be a compound component, and therefore shall not include a Selection list nor a Combination nor Concatenation.
5943 5944 5945		• A OIDs or IDstring entry may not include the characters '(', ')', '[', ']', '%', '-', or '/', unless used as an Operator as described above. If one of these characters is part of a defined data system Identifier "name", then it shall be represented as a single literal Concatenated character.
5946	J.3.2	Formal Grammar for OIDs, IDString, and FormatString Columns
5947 5948 5949 5950 5951 5952 5953 5954		In each ID Table entry, the contents of the OIDs, IDString, and FormatString columns shall conform to the following grammar for Expr, unless the column is empty or (in the case of the OIDs column) it contains a keyword as specified in <u>J.2.2</u> . All three columns share the same grammar, except that the syntax for COMPONENT is different for each column as specified below. In a given ID Table Entry, the contents of the OIDs, IDString, and FormatString column (except if empty) shall have identical parse trees according to this grammar, except that the COMPONENTs may be different. Space characters are permitted (and ignored) anywhere in an Expr, except that in the interior of a COMPONENT spaces are only permitted where explicitly specified below.
5955		<pre>Expr ::= SelectionExpr "(" SelectionExpr ")" SelectionSubexpr</pre>
5956 5957 5958		<pre>SelectionExpr ::= SelectionSubexpr ("/" SelectionSubexpr)+</pre>
5959 5960		SelectionSubexpr ::= COMPONENT ComboExpr
5960 5961 5962		ComboExpr ::= ComboSubexpr+
5963 5964 5965 5966		ComboSubexpr ::= "(" COMPONENT ")" "[" COMPONENT "]" For the OIDs column, COMPONENT shall conform to the following grammar: COMPONENT_OIDs ::= (COMPONENT_OIDs_Char Concat)+
5967		COMPONENT_OIDs_Char ::= ("0""9")+
5968 5969 5970		For the IDString column, COMPONENT shall conform to the following grammar: COMPONENT_IDString ::= UnquotedIDString QuotedIDString
5971 5972		UnquotedIDString ::= (UnQuotedIDStringChar Concat)+
5973 5974		UnquotedIDStringChar ::=
5975 5976 5977		QuotedIDString ::= QUOTE QuotedIDStringConstituent+ QUOTE
5978 5979		QuotedIDStringConstituent ::= "" "!" "#""~" (QUOTE QUOTE)
5980		QUOTE refers to ASCII character 34 (decimal), the double quote character.
5981 5982 5983		When the QuotedIDString form for COMPONENT_IDString is used, the beginning and ending QUOTE characters shall <i>not</i> be considered part of the IDString. Between the beginning and ending QUOTE, all ASCII characters in the range 32 (decimal) through 126 (decimal), inclusive, are allowed,
5984 5985		except that two QUOTE characters in a row shall denote a single double-quote character to be included in the IDString.

5986 5987 5988 5989 5990	In the QuotedIDString form, a % character does not denote the concatenation operator, but instead is just a percent character included literally in the IDString. To use the concatenation operator, the UnquotedIDString form must be used. In that case, a degenerate concatenation operator (where the start character equals the end character) may be used to include a character into the IDString that is not one of the characters listed for UnquotedIDStringChar.
5991	For the FormatString column, COMPONENT shall conform to the following grammar:
5992	COMPONENT_FormatString ::= Range? ("an" "n")
5993	FixedRange "n" " "+ VarRange "an"
5994	
5995	Range ::= FixedRange VarRange
5996	
5997	FixedRange ::= Number
5998	
5999	VarRange ::= Number "*" Number?
6000	
6001	Number ::= ("0""9")+
6002 6003	The syntax for COMPONENT for the OIDs and IDString columns make reference to Concat, whose syntax is specified as follows:
6004	Concat ::= `%" `x" HexChar `-" HexChar
6005	
6006	HexChar ::= ("0""9" "A""F")
6007	The hex value following the hyphen shall be greater than or equal to the hex value preceding the

6007The hex value following the hyphen shall be greater than or equal to the hex value preceding the
hyphen. In the OIDs column, each hex value shall be in the range 30_{hex} to 39_{hex} , inclusive. In the
OOS6009IDString column, each hex value shall be in the range 20_{hex} to $7E_{hex}$, inclusive.

6010 J.4 OID input/output representation

6011The default method for representing the contents of a Packed Object to a receiving system is as a6012series of name/value pairs, where the name is an OID, and the value is the decoded data string6013associated with that OID. Unless otherwise specified by a K-RootOID keyword line, the default root6014OID is urn:oid:1.0.15961.ff, where ff is the Data Format encoded in the DSFID. The final arc of6015the OID is (by default) the IDvalue, but this is typically overridden by an entry in the OIDs column.6016Note that an encoded Application Indicator (see 1.5.3.1) may change ff from the value indicated by6017the DSFID.

6018If supported by information in the ID Table's IDstring column, a receiving system may translate the6019OID output into various alternative formats, based on the IDString representation of the OIDs. One6020such format, as described in ISO/IEC 15434, requires as additional information a two-digit Format6021identifier; a table registration may provide this information using the K-ISO15434 keyword as6022described above.

6023The combination of the K-RootOID keyword and the OIDs column provides the registering entity an6024ability to assign OIDs to data system identifiers without regard to how they are actually encoded,6025and therefore the same OID assignment can apply regardless of the access method.

6026 J.4.1 "ID Value OID" output representation

6027If the receiving system does not have access to the relevant ID Table (possibly because it is newly-
registered), the Packed Objects decoder will not have sufficient information to convert the IDvalue
(plus Secondary ID bits) to the intended OID. In order to ease the introduction of new or external
tables, encoders have an option to follow "restricted use" rules (see <u>1.5.3.2</u>).

6031When a receiving system has decoded a Packed Object encoded following "restricted use" rules, but6032does not have access to the indicated ID Table, it shall construct an "ID Value OID" in the following6033format:

6034 urn:oid:1.0.15961.300.ff.bb.idval.secbits

6035 where 1.0.15961.300 is a Root OID with a reserved Data Format of "300" that is never encoded in 6036 a DSFID, but is used to distinguish an "ID Value OID" from a true OID (as would have been used if 6037 the ID Table were available). The reserved value of 300 is followed by the encoded table's Data 6038 Format (ff) (which may be different from the DSFID's default), the table ID (bb) (always '0', unless otherwise indicated via an encoded Application Indicator), the encoded ID value, and the decimal 6039 6040 representation of the invoked Secondary ID bits. This process creates a unique OID for each unique fully-qualified ID Value. For example, using the hypothetical ID Table shown in Annex L (but 6041 6042 assuming, for illustration purposes, that the table's specified Root OID is urn:oid:1.0.12345.9, 6043 then an "AMOUNT" ID with a fourth digit of '2' has a true OID of:

- 6044 **urn:oid:1.0.12345.9.3912**
- 6045 and an "ID Value OID" of

6046 urn:oid:1.0.15961.300.9.0.51.2

6047When a single ID Value represents multiple component identifiers via combinations or optional6048components, their multiple OIDs and data strings shall be represented separately, each using the6049same "ID Value OID" (up through and including the Secondary ID bits arc), but adding as a final arc6050the component number (starting with "1" for the first component decoded under that IDvalue).

If the decoding system encounters a Packed Object that references an ID Table that is unavailable 6051 6052 to the decoder, but the encoder chose not to set the "Restricted Use" bit in the Application Indicator, 6053 then the decoder shall either discard the Packed Object, or relay the entire Packed Object to the 6054 receiving system as a single undecoded binary entity, a sequence of octets of the length specified in the ObjectLength field of the Packed Object. The OID for an undecoded Packed Object shall be 6055 urn:oid:1.0.15961.301.ff.n, where "301" is a Data Format reserved to indicate an undecoded 6056 Packed Object, "ff" shall be the Data Format encoded in the DSFID at the start of memory, and an 6057 optional final arc 'n' may be incremented sequentially to distinguish between multiple undecoded 6058 6059 Packed Objects in the same data carrier memory.

6062

6063

6064 6065

6068

6069

6070

6071

6072

6073

6074

6075

6076

6081

6082

6083

6084

6085 6086

6093

6060 K Packed Objects encoding tables

Packed Objects primarily utilise two encoding bases:

- Base 10, which encodes each of the digits '0' through '9' in one Base 10 value
- Base 30, which encodes the capital letters and selectable punctuation in one Base-30 value, and encodes punctuation and control characters from the remainder of the ASCII character set in two base-30 values (using a Shift mechanism)

6066 For situations where a high percentage of the input data's non-numeric characters would require 6067 pairs of base-30 values, two alternative bases, Base 74 and Base 256, are also defined:

- The values in the Base 74 set correspond to the invariant subset of ISO 646 (which includes the GS1 character set), but with the digits eliminated, and with the addition of GS and <space> (GS is supported for uses other than as a data delimiter).
- The values in the Base 256 set may convey octets with no graphical-character interpretation, or "extended ASCII values" as defined in ISO 8859-6, or UTF-8 (the interpretation may be set in the registered ID Table for an application). The characters '0' through '9' (ASCII values 48 through 57) are supported, and an encoder may therefore encode the digits either by using a prefix or suffix (in Base 256) or by using a character map (in Base 10). Note that in GS1 data, FNC1 is represented by ASCII <GS> (octet value 29_{dec}).

6077Finally, there are situations where compaction efficiency can be enhanced by run-length encoding of6078base indicators, rather than by character map bits, when a long run of characters can be classified6079into a single base. To facilitate that classification, additional "extension" bases are added, only for6080use in Prefix and Suffix Runs.

- In order to support run-length encoding of a primarily-numeric string with a few interspersed letters, a Base 13 is defined, per Table B-2
 - Two of these extension bases (Base 40 and Base 84) are simply defined, in that they extend the corresponding non-numeric bases (Base 30 and Base 74, respectively) to also include the ten decimal digits. The additional entries, for characters '0' through '9', are added as the next ten sequential values (values 30 through 39 for Base 40, and values 74 through 83 for Base 84).
- 6087The "extended" version of Base 256 is defined as Base 40. This allows an encoder the option of
encoding a few ASCII control or upper-ASCII characters in Base 256, while using a Prefix and/or
Suffix to more efficiently encode the remaining non-numeric characters.

6090The number of bits required to encode various numbers of Base 10, Base 16, Base 30, Base 40,6091Base 74, and Base 84 characters are shown in Figure B-1. In all cases, a limit is placed on the size6092of a single input group, selected so as to output a group no larger than 20 octets.


```
6094
                     Figure K-1 Required number of bits for a given number of Base 'N' values
6095
      /* Base10 encoding accepts up to 48 input values per group: */
      static const unsigned char bitsForNumBase10[] = {
6096
       /* 0 - 9 */ 0, 4, 7, 10, 14, 17, 20, 24, 27, 30,
6097
      /* 10 - 19 */ 34, 37, 40, 44, 47, 50, 54, 57, 60, 64,
6098
6099
       /* 20 - 29 */ 67, 70, 74, 77, 80, 84, 87, 90, 94, 97,
6100
       /* 30 - 39 */ 100, 103, 107, 110, 113, 117, 120, 123, 127, 130,
6101
       /* 40 - 48 */ 133, 137, 140, 143, 147, 150, 153, 157, 160};
6102
6103
       /* Base13 encoding accepts up to 43 input values per group: */
6104
       static const unsigned char bitsForNumBase13[] = {
6105
      /* 0 - 9 */ 0, 4, 8, 12, 15, 19, 23, 26, 30, 34,
6106
       /* 10 - 19 */ 38, 41, 45, 49, 52, 56, 60, 63, 67, 71,
6107
      /* 20 - 29 */ 75, 78, 82, 86, 89, 93, 97, 100, 104, 108,
       /* 30 - 39 */ 112, 115, 119, 123, 126, 130, 134, 137, 141, 145,
6108
      /* 40 - 43 */ 149, 152, 156, 160 };
6109
6110
6111
      /* Base30 encoding accepts up to 32 input values per group: */
6112
      static const unsigned char bitsForNumBase30[] = {
       /* 0 - 9 */ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45,
6113
6114
      /* 10 - 19 */ 50, 54, 59, 64, 69, 74, 79, 84, 89, 94,
6115
       /* 20 - 29 */ 99, 104, 108, 113, 118, 123, 128, 133, 138, 143,
      /* 30 - 32 */ 148, 153, 158};
6116
6117
6118
      /* Base40 encoding accepts up to 30 input values per group: */
6119
      static const unsigned char bitsForNumBase40[] = {
      /* 0 - 9 */ 0, 6, 11, 16, 22, 27, 32, 38, 43, 48,
6120
       /* 10 - 19 */ 54, 59, 64, 70, 75, 80, 86, 91, 96, 102,
6121
       /* 20 - 29 */ 107, 112, 118, 123, 128, 134, 139, 144, 150, 155,
6122
6123
      /* 30 */ 160 };
6124
6125
      /* Base74 encoding accepts up to 25 input values per group: */
       static const unsigned char bitsForNumBase74[] = {
6126
6127
      /* 0 - 9 */ 0, 7, 13, 19, 25, 32, 38, 44, 50, 56,
6128
       /* 10 - 19 */ 63, 69, 75, 81, 87, 94, 100, 106, 112, 118,
       /* 20 - 25 */ 125, 131, 137, 143, 150, 156 };
6129
6130
       /* Base84 encoding accepts up to 25 input values per group: */
6131
6132
      static const unsigned char bitsForNumBase84[] = {
6133
       /* 0 - 9 */ 0, 7, 13, 20, 26, 32, 39, 45, 52, 58,
6134
      /* 10 - 19 */ 64, 71, 77, 84, 90, 96, 103, 109, 116, 122,
6135
      /* 20 - 25 */ 128, 135, 141, 148, 154, 160 };
6136
```

6137 Table K-1 Base 30 Character set

Val	Basic set		Shift 1 set		Shift 2 set		
	Char	Decimal	Char	Decimal	Char	Decimal	
0	A-Punc ¹	N/A	NUL	0	space	32	

Val	Basic set		Shift 1 set	Shift 1 set		Shift 2 set	
1	А	65	SOH	1	ļ	33	
2	В	66	STX	2	и	34	
3	С	67	ETX	3	#	35	
4	D	68	EOT	4	\$	36	
5	E	69	ENQ	5	%	37	
6	F	70	АСК	6	&	38	
7	G	71	BEL	7	1	39	
8	Н	72	BS	8	(40	
9	1	73	НТ	9)	41	
10	J	74	LF	10	*	42	
11	К	75	VT	11	+	43	
12	L	76	FF	12	1	44	
13	М	77	CR	13	-	45	
14	N	78	SO	14		46	
15	0	79	SI	15	/	47	
16	Р	80	DLE	16	:	58	
17	Q	81	ETB	23	;	59	
18	R	82	ESC	27	<	60	
19	S	83	FS	28	=	61	
20	Т	84	GS	29	>	62	
21	U	85	RS	30	?	63	
22	V	86	US	31	@	64	
23	W	87	invalid	N/A	٨	92	
24	Х	88	invalid	N/A	^	94	
25	Y	89	invalid	N/A	_	95	
26	Z	90	[91	1	96	
27	Shift 1	N/A]	93		124	
28	Shift 2	N/A	{	123	~	126	
29	P-Punc ²	N/A	}	125	invalid	N/A	

Note 1: **Application-Specified Punctuation** character (Value 0 of the Basic set) is defined by default as the ASCII hyphen character (45_{dec}), but may be redefined by a registered Data Format

6140Note 2: Programmable Punctuation character (Value 29 of the Basic set): the first appearance of6141P-Punc in the alphanumeric data for a Packed Object, whether that first appearance is compacted6142into the Base 30 segment or the Base 40 segment, acts as a <Shift 2>, and also "programs" the6143character to be represented by second and subsequent appearances of P-Punc (in either segment)6144for the remainder of the alphanumeric data in that Packed Object. The Base 30 or Base 40 value6145immediately following that first appearance is interpreted using the Shift 2 column (Punctuation),6146and assigned to subsequent instances of P-Punc for the Packed Object.

6147

Table K-2 Base 13 Character set

Value	Basic set		Shift 1 set		Shift 2 set		Shift 3 set	
	Char	Decimal	Char	Decimal	Char	Decimal	Char	Decimal
0	0	48	А	65	Ν	78	space	32
1	1	49	В	66	0	79	\$	36
2	2	50	С	67	Р	80	%	37
3	3	51	D	68	Q	81	&	38
4	4	52	E	69	R	82	*	42
5	5	53	F	70	S	83	+	43
6	6	54	G	71	Т	84	,	44
7	7	55	Н	72	U	85	-	45
8	8	56	I	73	V	86		46
9	9	57	J	74	W	87	1	47
10	Shift1	N/A	К	75	Х	88	?	63
11	Shift2	N/A	L	76	Y	89	_	95
12	Shift3	N/A	М	77	Z	90	<gs></gs>	29

6149

6148

6150 Table K-3 Base 40 Character set

Val	Basic set		Shift 1 se	et	Shift 2 set	
	Char	Decimal	Char	Decimal	Char	Decimal
0	See Table	K-1				
29	See Table	K-1				
30	0	48				
31	1	49				
32	2	50				
33	3	51				
34	4	52				
35	5	53				
36	6	54				
37	7	55				
38	8	56				
39	9	57				

6151

Table K-4 Character Set

Table K-4 Character Set								
Val	Char	Decimal	Val	Char	Decimal	Val	Char	Decimal
0	GS	29	25	F	70	50	d	100
1	i	33	26	G	71	51	е	101
2		34	27	Н	72	52	f	102
3	%	37	28	I	73	53	g	103
4	&	38	29	J	74	54	h	104
5		39	30	к	75	55	i	105

Val	Char	Decimal	Val	Char	Decimal	Val	Char	Decimal
6	(40	31	L	76	56	j	106
7)	41	32	М	77	57	k	107
8	*	42	33	N	78	58	I	108
9	+	43	34	0	79	59	m	109
10	1	44	35	Р	80	60	n	110
11	-	45	36	Q	81	61	0	111
12		46	37	R	82	62	р	112
13	1	47	38	S	83	63	q	113
14	:	58	39	Т	84	64	r	114
15	;	59	40	U	85	65	s	115
16	<	60	41	V	86	66	t	116
17	=	61	42	W	87	67	u	117
18	>	62	43	х	88	68	v	118
19	?	63	44	Υ	89	69	w	119
20	А	65	45	Z	90	70	х	120
21	В	66	46	_	95	71	У	121
22	С	67	47	а	97	72	z	122
23	D	68	48	b	98	73	Space	32
24	E	69	49	с	99			

6154 Table K-5 Base 84 Character Set

Val	Char	Decimal	Val	Char	Decimal	Val	Char	Decimal
0	FNC1	N/A	25	F		50	d	
1-73	See Table	e K-4						
74	0	48	78	4	52	82	8	56
75	1	49	79	5	53	83	9	57
76	2	50	80	6	54			
77	3	51	81	7	55			

6157

6158

6159

6165

6166

6167

6168

6170

6171

6174 6175

6176

6177

6178 6179

6180

6181

6182

6183

6184

6185 6186

6187

6188

6189

6190

6192 6193

6194

6196

6197

6201

6202

6155 L Encoding Packed Objects (non-normative)

In order to illustrate a number of the techniques that can be invoked when encoding a Packed Object, the following sample input data consists of data elements from a hypothetical data system. This data represents:

- An Expiration date (OID 7) of October 31, 2006, represented as a six-digit number 061031.
- An Amount Payable (OID 3n) of 1234.56 Euros, represented as a digit string 978123456 ("978"
 is the ISO Country Code indicating that the amount payable is in Euros). As shown in Table L-1, this data element is all-numeric, with at least 4 digits and at most 18 digits. In this example, the OID "3n" will be "32", where the "2" in the data element name indicates the decimal point is located two digits from the right.
 - A Lot Number (OID 1) of 1A23B456CD

The application will present the above input to the encoder as a list of OID/Value pairs. The resulting input data, represented below as a single data string (wherein each OID final arc is shown in parentheses) is:

6169 (7)061031(32)978123456(1)1A23B456CD

The example uses a hypothetical ID Table. In this hypothetical table, each ID Value is a seven-bit index into the Base ID Table; the entries relevant to this example are shown in Table L-1.

- 6172 Encoding is performed in the following steps:
- Three data elements are to be encoded, using Table L-1.
 - As shown in the table's IDstring column, the combination of OID 7 and OID 1 is efficiently supported (because it is commonly seen in applications), and thus the encoder re-orders the input so that 7 and 1 are adjacent and in the order indicated in the OIDs column:
 - (7)061031(1)1A23B456CD(32)978123456
 - Now, this OID pair can be assigned a single ID Value of 125 (decimal). The FormatString column for this entry shows that the encoded data will always consist of a fixed-length 6-digit string, followed by a variable-length alphanumeric string.
 - Also as shown in Table L-1, OID 3n has an ID Value of 51 (decimal). The OIDs column for this entry shows that the OID is formed by concatenating "3" with a suffix consisting of a single character in the range 30_{hex} to 39_{hex} (i.e., a decimal digit). Since that is a range of ten possibilities, a four-bit number will need to be encoded in the Secondary ID section to indicate which suffix character was chosen. The FormatString column for this entry shows that its data is variable-length numeric; the variable length information will require four bits to be encoded in the Aux Format section.
 - Since only a small percentage of the 128-entry ID Table is utilised in this Packed Object, the encoder chooses an ID List format, rather than an ID Map format. As this is the default format, no Format Flags section is required.
- This results in the following Object Info section:
 - EBV-6 (ObjectLength): the value is TBD at this stage of the encoding process
 - Pad Indicator bit: TBD at this stage
 - EBV-3 (numberOfIDs) of 001 (meaning two ID Values will follow)
- 6195 An ID List, including:
 - First ID Value: 125 (dec) in 7 bits, representing OID 7 followed by OID 1
 - Second ID Value: 51 (decimal) in 7 bits, representing OID 3n
- A Secondary ID section is encoded as '0010', indicating the trailing '2' of the 3n OID. It so
 happens this '2' means that two digits follow the implied decimal point, but that information is
 not needed in order to encode or decode the Packed Object.
 - Next, an Aux Format section is encoded. An initial '1' bit is encoded, invoking the Packed-Object compaction method. Of the three OIDs, only OID (3n) requires encoded Aux Format

(202	
6203 6204	information: a four-bit pattern of '0101' (representing "six" variable-length digits – as "one" is the first allowed choice, a pattern of "0101" denotes "six").
6205 6206 6207 6208 6209	Next, the encoder encodes the first data item, for OID 7, which is defined as a fixed-length six- digit data item. The six digits of the source data string are "061031", which are converted to a sequence of six Base-10 values by subtracting 30 _{hex} from each character of the string (the resulting values are denoted as values v ₅ through v ₀ in the formula below). These are then converted to a single Binary value, using the following formula:
6210	$\square 10^5 * v_5 + 10^4 * v_4 + 10^3 * v_3 + 10^2 * v_2 + 10^1 * v_1 + 10^0 * v_0$
6211 6212 6213	According to Figure K-1, a six-digit number is always encoded into 20 bits (regardless of any leading zero's in the input), resulting in a Binary string of: "0000 11101110 01100111"
6214 6215 6216	 The next data item is for OID 1, but since the table indicates that this OID's data is alphanumeric, encoding into the Packed Object is deferred until after all of the known-length numeric data is encoded.
6217 6218 6219 6220 6221 6222	Next, the encoder finds that OID 3n is defined by Table L-1 as all-numeric, whose length of 9 (in this example) was encoded as (9 – 4 = 5) into four bits within the Aux Format subsection. Thus, a Known-Length-Numeric subsection is encoded for this data item, consisting of a binary value bit-pattern encoding 9 digits. Using Figure K-1 in Annex <u>K</u> , the encoder determines that 30 bits need to be encoded in order to represent a 9-digit number as a binary value. In this example, the binary value equivalent of "978123456" is the 30-bit binary sequence:
6223	"111010010011001111101011000000"
6224 6225	 At this point, encoding of the Known-Length Numeric subsection of the Data Section is complete.
6226 6227 6228 6229	Note that, so far, the total number of encoded bits is $(3 + 6 + 1 + 7 + 7 + 4 + 5 + 20 + 30)$ or 83 bits, representing the IDLPO Length Section (assuming that a single EBV-6 vector remains sufficient to encode the Packed Object's length), two 7-bit ID Values, the Secondary ID and Aux Format sections, and two Known-Length-Numeric compacted binary fields.
6230 6231 6232 6233 6234 6235 6236 6237 6238	At this stage, only one non-numeric data string (for OID 1) remains to be encoded in the Alphanumeric subsection. The 10-character source data string is "1A23B456CD". This string contains no characters requiring a base-30 Shift out of the basic Base-30 character set, and so Base-30 is selected for the non-numeric base (and so the first bit of the Alphanumeric subsection is set to '0' accordingly). The data string has no substrings with six or more successive characters from the same base, and so the next two bits are set to '00' (indicating that neither a Prefix nor a Suffix is run-length encoded). Thus, a full 10-bit Character Map needs to be encoded next. Its specific bit pattern is '0100100011', indicating the specific sequence of digits and non-digits in the source data string "1A23B456CD".
6239 6240 6241 6242 6243 6244	Up to this point, the Alphanumeric subsection contains the 13-bit sequence '0 00 0100100011'. From Annex \underline{K} , it can be determined that lengths of the two final bit sequences (encoding the Base-10 and Base-30 components of the source data string) are 20 bits (for the six digits) and 20 bits (for the four uppercase letters using Base 30). The six digits of the source data string "1A23B456CD" are "123456", which encodes to a 20-bit sequence of: "00011110001001000000"
6245	which is appended to the end of the 13-bit sequence cited at the start of this paragraph.
6246 6247 6248	The four non-digits of the source data string are "ABCD", which are converted (using Table K-1) to a sequence of four Base-30 values 1, 2, 3, and 4 (denoted as values v_3 through v_0 in the formula below. These are then converted to a single Binary value, using the following formula:
6249	$30^3 * v_3 + 30^2 * v_2 + 30^1 * v_1 + 30^0 * v_0$
6250 6251 6252 6253 6254	In this example, the formula calculates as $(27000 \times 1 + 900 \times 2 + 30 \times 3 + 1 \times 4)$ which is equal to 070DE (hexadecimal) encoded as the 20-bit sequence "00000111000011011110" which is appended to the end of the previous 20-bit sequence. Thus, the AlphaNumeric section contains a total of $(13 + 20 + 20)$ or 53 bits, appended immediately after the previous 83 bits, for a grand total of 136 significant bits in the Packed Object.

6255 6256 6257 6258 6259 6260	The final encoding step is to calculate the full length of the Packed Object (to encode the EBV-6 within the Length Section) and to pad-out the last byte (if necessary). Dividing 136 by eight shows that a total of 17 bytes are required to hold the Packed Object, and that no pad bits are required in the last byte. Thus, the EBV-6 portion of the Length Section is "010001", where this EBV-6 value indicates 17 bytes in the Object. Following that, the Pad Indicator bit is set to '0' indicating that no padding bits are present in the last data byte.							
6261	The complete encoding process may be summarised as follows:							
6262	Original input: (7)061031(32)978123456(1)1A23B456CD							
6263	Re-ordered as: (7)061031(1)1A23B456CD(32)978123456							
6264								
6265	FORMAT FLAGS SECTION: (empty)							
6266	OBJECT INFO SECTION:							
6267	ebvObjectLen: 010001							
6268	paddingPresent: 0							
6269	ebvNumIDs: 001							
6270	IDvals: 1111101 0110011							
6271	SECONDARY ID SECTION:							
6272	IDbits: 0010							
6273	AUX FORMAT SECTION:							
6274	auxFormatbits: 1 0101							
6275	DATA SECTION:							
6276	KLnumeric: 0000 11101110 01100111 111010 01001100 11111010 11000000							
6277	ANheader: 0							
6278	ANprefix: 0							
6279	ANsuffix: 0							
6280	ANmap: 01 00100011							
6281	ANdigitVal: 0001 11100010 01000000							
6282	ANnonDigitsVal: 0000 01110000 11011110							
6283	Padding: none							
6284	Total Bits in Packed Object: 136; when byte aligned: 136							
6285	Output as: 44 7E B3 2A 87 73 3F 49 9F 58 01 23 1E 24 00 70 DE							
6286 6287	Table L-1 shows the relevant subset of a hypothetical ID Table for a hypothetical ISO-registered Data Format 99.							
6288	Table L-1 hypothetical Base ID Table, for the example in Annex L							
	K-Version = 1.0							
	K-TableID = F99B0							
	K-RootOID =							

OIDs

1

K-IDsize = 128

IDvalue

3

Data Title

BATCH/LOT

FormatString

1*20an

K-Version = 1.0			
8	7	USE BY OR EXPIRY	6n
51	3%x30-39	AMOUNT	4*18n
125	(7) (1)	EXPIRY + BATCH/LOT	(6n) (1*20an)
K-TableEnd = F99B0			

6289 M Decoding Packed Objects (non-normative)

6290 M.1 Overview

6308

6309

6310 6311

6312

6313

6314

6315

6316

6330

6331

6332

6333

6334

6291The decode process begins by decoding the first byte of the memory as a DSFID. If the leading two6292bits indicate the Packed Objects access method, then the remainder of this Annex applies. From the6293remainder of the DSFID octet or octets, determine the Data Format, which shall be applied as the6294default Data Format for all of the Packed Objects in this memory. From the Data Format, determine6295the default ID Table which shall be used to process the ID Values in each Packed Object.

- Typically, the decoder takes a first pass through the initial ID Values list, as described earlier, in 6296 6297 order to complete the list of identifiers. If the decoder finds any identifiers of interest in a Packed Object (or if it has been asked to report back all the data strings from a tag's memory), then it will 6298 6299 need to record the implied fixed lengths (from the ID table) and the encoded variable lengths (from 6300 the Aux Format subsection), in order to parse the Packed Object's compressed data. The decoder, 6301 when recording any variable-length bit patterns, must first convert them to variable string lengths 6302 per the table (for example, a three-bit pattern may indicate a variable string length in the range of 6303 two to nine).
- 6304Starting at the first byte-aligned position after the end of the DSFID, parse the remaining memory6305contents until the end of encoded data, repeating the remainder of this section until a Terminating6306Pattern is reached.
- 6307 Determine from the leading bit pattern (see <u>1.4</u>) which one of the following conditions applies:
 - 1. there are no further Packed Objects in Memory (if the leading 8-bit pattern is all zeroes, this indicates the Terminating Pattern)
 - one or more Padding bytes are present. If padding is present, skip the padding bytes, which are as described in Annex <u>1</u>, and examine the first non-pad byte.
 - 3. a Directory Pointer is encoded. If present, record the offset indicated by the following bytes, and then continue examining from the next byte in memory
 - a Format Flags section is present, in which case process this section according to the format described in Annex <u>I</u>
 - 5. a default-format Packed Object begins at this location

6317If the Packed Object had a Format Flags section, then this section may indicate that the Packed6318Object is of the ID Map format, otherwise it is of the ID List format. According to the indicated6319format, parse the Object Information section to determine the Object Length and ID information6320contained in the Packed Object. See Annex <u>I</u> for the details of the two formats. Regardless of the6321format, this step results in a known Object length (in bits) and an ordered list of the ID Values6322encoded in the Packed Object. From the governing ID Table, determine the list of characteristics for6323each ID (such as the presence and number of Secondary ID bits).

- 6324Parse the Secondary ID section of the Object, based on the number of Secondary ID bits invoked by6325each ID Value in sequence. From this information, create a list of the fully-qualified ID Values6326(FQIDVs) that are encoded in the Packed Object.
- 6327Parse the Aux Format section of the Object, based on the number of Aux Format bits invoked by
each FQIDV in sequence.
- 6329 Parse the Data section of the Packed Object:
 - If one or more of the FQIDVs indicate all-numeric data, then the Packed Object's Data section contains a Known-Length Numeric subsection, wherein the digit strings of these all-numeric items have been encoded as a series of binary quantities. Using the known length of each of these all-numeric data items, parse the correct numbers of bits for each data item, and convert each set of bits to a string of decimal digits.
- 63352. If (after parsing the preceding sections) one or more of the FQIDVs indicate alphanumeric data,6336then the Packed Object's Data section contains an AlphaNumeric subsection, wherein the6337character strings of these alphanumeric items have been concatenated and encoded into the6338structure defined in Annex <u>I</u>. Decode this data using the "Decoding Alphanumeric data"6339procedure outlined below.

6340		3	For each FQIDV in the decoded sequence:	
6341 6342			convert the FQIDV to an OID, by appending the OID string defined in the registered format's ID Table to the root OID string defined in that ID Table (or to the default Root OID, if none is defined in the table)	
6343 6344 6345 6346		5.	Complete the OID/Value pair by parsing out the next sequence of decoded characters. The length of this sequence is determined directly from the ID Table (if the FQIDV is specified as fixed length) or from a corresponding entry encoded within the Aux Format section.	
6347	M.2	De	ecoding alphanumeric data	
6348 6349 6350 6351		enc sec	hin the Alphanumeric subsection of a Packed Object, the total number of data characters is not coded, nor is the bit length of the character map, nor are the bit lengths of the succeeding Binary tions (representing the numeric and non-numeric Binary values). As a result, the decoder must ow a specific procedure in order to correctly parse the AlphaNumeric section.	
6352 6353 6354 6355 6356 6357 6358		When decoding the A/N subsection using this procedure, the decoder will first count the number of non-bitmapped values in each base (as indicated by the various Prefix and Suffix Runs), and (from that count) will determine the number of bits required to encoded these numbers of values in these bases. The procedure can then calculate, from the remaining number of bits, the number of explicitly-encoded character map bits. After separately decoding the various binary fields (one field for each base that was used), the decoder "re-interleaves" the decoded ASCII characters in the correct order.		
6359		The	A/N subsection decoding procedure is as follows:	
6360		•	Determine the total number of non-pad bits in the Packed Object, as described in section <u>1.8.2</u>	
6361 6362		•	Keep a count of the total number of bits parsed thus far, as each of the subsections prior to the Alphanumeric subsection is processed	
6363 6364		•	Parse the initial Header bits of the Alphanumeric subsection, up to but not including the Character Map, and add this number to previous value of TotalBitsParsed.	
6365 6366		•	Initialise a DigitsCount to the total number of base-10 values indicated by the Prefix and Suffix (which may be zero)	
6367 6368		•	Initialise an ExtDigitsCount to the total number of base-13 values indicated by the Prefix and Suffix (which may be zero)	
6369 6370		•	Initialise a NonDigitsCount to the total number of base-30, base 74, or base-256 values indicated by the Prefix and Suffix (which may be zero)	
6371 6372		•	Initialise an ExtNonDigitsCount to the total number of base-40 or base 84 values indicated by the Prefix and Suffix (which may be zero)	
6373			Calculate Extended-base Bit Counts: Using the tables in Annex \underline{K} , calculate two numbers:	
6374 6375			 ExtDigitBits, the number of bits required to encode the number of base-13 values indicated by ExtDigitsCount, and 	
6376 6377			 ExtNonDigitBits, the number of bits required to encode the number of base-40 (or base-84) values indicated by ExtNonDigitsCount 	
6378			Add ExtDigitBits and ExtNonDigitBits to TotalBitsParsed	
6379 6380		•	Create a PrefixCharacterMap bit string, a sequence of zero or more quad-base character-map pairs, as indicated by the Prefix bits just parsed. Use quad-base bit pairs defined as follows:	
6381			 '00' indicates a base 10 value; 	
6382			 '01' indicates a character encoded in Base 13; 	
6383			 '10' indicates the non-numeric base that was selected earlier in the A/N header, and 	
6384			11' indicates the Extended version of the non-numeric base that was selected earlier	
6385 6386		•	Create a SuffixCharacterMap bit string, a sequence of zero or more quad-base character-map pairs, as indicated by the Suffix bits just parsed.	

6387 6388	•	Initialise the FinalCharacterMap bit string and the MainCharacterMap bit string to an empty string
6389		Calculate running Bit Counts: Using the tables in Annex B , calculate two numbers:
6390 6391		 DigitBits, the number of bits required to encode the number of base-10 values currently indicated by DigitsCount, and
6392 6393		 NonDigitBits, the number of bits required to encode the number of base-30 (or base 74 or base-256) values currently indicated by NonDigitsCount
6394		set AlnumBits equal to the sum of DigitBits plus NonDigitBits
6395 6396 6397 6398 6399 6400 6401	•	if the sum of TotalBitsParsed and AlnumBits equals the total number of non-pad bits in the Packed Object, then no more bits remain to be parsed from the character map, and so the remaining bit patterns, representing Binary values, are ready to be converted back to extended base values and/or base 10/base 30/base 74/base-256 values (skip to the Final Decoding steps below). Otherwise, get the next encoded bit from the encoded Character map, convert the bit to a quad-base bit-pair by converting each '0' to '00' and each '1' to '10', append the pair to the end of the MainCharacterMap bit string, and:
6402		 If the encoded map bit was '0', increment DigitsCount,
6403		Else if '1', increment NonDigitsCount
6404		Loop back to the Calculate running Bit Counts step above and continue
6405		Final decoding steps: once the encoded Character Map bits have been fully parsed:
6406 6407 6408		 Fetch the next set of zero or more bits, whose length is indicated by ExtDigitBits. Convert this number of bits from Binary values to a series of base 13 values, and store the resulting array of values as ExtDigitVals.
6409 6410 6411 6412		Fetch the next set of zero or more bits, whose length is indicated by ExtNonDigitBits. Convert this number of bits from Binary values to a series of base 40 or base 84 values (depending on the selection indicated in the A/N Header), and store the resulting array of values as ExtNonDigitVals.
6413 6414 6415		 Fetch the next set of bits, whose length is indicated by DigitBits. Convert this number of bits from Binary values to a series of base 10 values, and store the resulting array of values as DigitVals.
6416 6417 6418 6419		Fetch the final set of bits, whose length is indicated by NonDigitBits. Convert this number of bits from Binary values to a series of base 30 or base 74 or base 256 values (depending on the value of the first bits of the Alphanumeric subsection), and store the resulting array of values as NonDigitVals.
6420 6421 6422		Create the FinalCharacterMap bit string by copying to it, in this order, the previously-created PrefixCharacterMap bit string, then the MainCharacterMap string, and finally append the previously-created SuffixCharacterMap bit string to the end of the FinalCharacterMap string.
6423 6424 6425		 Create an interleaved character string, representing the concatenated data strings from all of the non-numeric data strings of the Packed Object, by parsing through the FinalCharacterMap, and:
6426 6427	•	For each '00' bit-pair encountered in the FinalCharacterMap, copy the next value from DigitVals to InterleavedString (add 48 to each value to convert to ASCII);
6428 6429 6430 6431 6432	1	For each '01' bit-pair encountered in the FinalCharacterMap, fetch the next value from ExtDigitVals, and use Table K-2 to convert that value to ASCII (or, if the value is a Base 13 shift, then increment past the next '01' pair in the FinalCharacterMap, and use that Base 13 shift value plus the next Base 13 value from ExtDigitVals to convert the pair of values to ASCII). Store the result to InterleavedString;
6433 6434 6435 6436	1	For each '10' bit-pair encountered in the FinalCharacterMap, get the next character from NonDigitVals, convert its base value to an ASCII value using Annex \underline{K} , and store the resulting ASCII value into InterleavedString. Fetch and process an additional Base 30 value for every Base 30 Shift values encountered, to create and store a single ASCII character.

6437	For each '11' bit-pair encountered in the FinalCharacterMap, get the next character from
6438	ExtNonDigitVals, convert its base value to an ASCII value using Annex <u>K</u> , and store the resulting
6439	ASCII value into InterleavedString, processing any Shifts as previously described.
6440	Once the full FinalCharacterMap has been parsed, the InterleavedString is completely populated.
6441	Starting from the first AlphaNumeric entry on the ID list, copy characters from the InterleavedString
6442	to each such entry, ending each copy operation after the number of characters indicated by the
6443	corresponding Aux Format length bits, or at the end of the InterleavedString, whichever comes first.
6444	

6446 **N**

Acknowledgement

Name	Company
Pete Alvarez	GS1 Global Office
Karen Arkesteyn	GS1 Belgium & Luxembourg
Xavier Barras	GS1 France
Jonas Buskenfried	GS1 Sweden
Kevin Dean	GS1 Canada
Raymond Delnicki	GS1 US
Sean Dennison	GS1 Ireland
Vera Feuerstein	Nestlé
Richard Fisher	DoD Logistics AIT Standards Office
Jean Christophe Gilbert	GS1 France
Ginger Green	Wal-Mart Stores, Inc.
Karolin Harsanji	GS1 Sweden
Yoshihiko Iwasaki	GS1 Japan
Steven Keddie	GS1 Global Office
Kimmo Keravuori	GS1 Finland
Ildikó Lieber	GS1 Hungary
Ilka Machemer	GS1 Germany
Dan Mullen	GS1 Global Office
John Pearce	Axicon Auto ID Ltd
Sarina Pielaat	GS1 Netherlands
Neil Piper	GS1 UK
Craig Alan Repec	GS1 Global Office
John Ryu	GS1 Global Office
Sue Schmid	GS1 Australia
Eugen Sehorz	GS1 Austria
Steven Simske	Colorado State University
Marie Vans	HP Inc.
Jane Wulff	GS1 Denmark

6448