

SOSTENIBILITÀ NELLE CATEGORIE

CATEGORIA MERCEOLOGICA:

VINO

INDICE DEI CONTENUTI

- Obiettivi del progetto
- Approccio Life Cycle Thinking
- Categoria di prodotto
- Fonti di dati e metodo di valutazione dell'impatto ambientale
- Fasi del ciclo di vita
- Indicatori più rilevanti di impatto ambientale
- Azioni di miglioramento
- Esempi di comunicazione "User-friendly"
- Summary
- Assunzioni e limitazioni

OBIETTIVI DEL PROGETTO

Lo studio, realizzato da Ergo srl, società spin-off della Scuola Superiore Sant'Anna, si inserisce all'interno di un progetto che mira a **integrare la sostenibilità nel dialogo tra industria e distribuzione**, con l'obiettivo di generare un impatto positivo sull'ambiente. Ciò attraverso una preliminare, chiara e condivisa comprensione, basata su un metodo scientifico, di quali sono gli elementi che generano maggiori criticità e ricadute negative sull'ambiente, così da integrare queste evidenze nel dialogo tra le parti e con il consumatore e comprendere le azioni di miglioramento da perseguire.

L'attività è stata condotta attraverso un'analisi di letteratura delle principali fonti che hanno trattato, secondo un approccio scientifico, gli aspetti ambientali delle varie categorie di prodotto. Le evidenze raccolte sono state analizzate e interpretate, per meglio comprenderne la qualità e la rilevanza. L'ultima parte del lavoro si è concentrata sullo studio dei possibili ambiti di intervento rispetto agli aspetti ambientali individuati, al fine di migliorarne le caratteristiche di sostenibilità. Lo studio sarà poi oggetto di confronto in ambito ECR con alcune imprese rappresentative del settore, operanti nelle categorie in esame.

L'analisi complessiva coprirà le principali macro-categorie merceologiche del largo consumo, con lo scopo di rispondere alle seguenti domande chiave: Quali sono le variabili che determinano i maggiori impatti? Dove si collocano nel ciclo di vita del prodotto? Quali sono le leve e le azioni che consentono di migliorare? Chi le può agire tra i diversi soggetti coinvolti? Con quali risultati attesi? Quali sinergie tra i player?

APPROCCIO LIFE CYCLE THINKING

L'approccio adottato ha visto una ricerca e analisi di studi di letteratura, dataset disponibili, studi settoriali, progetti di ricerca condotti dal nostro centro di ricerca o da altre istituzioni e organizzazioni private al fine di identificate gli aspetti ambientali e gli indicatori d'impatto rilevanti per la categoria merceologica in analisi.

La rilevanza degli aspetti e degli indicatori ambientali, individuati per le varie categorie di prodotto, è garantita dal tipo di **approccio utilizzato dalle fonti analizzate**: un metodo analitico, basato sul cosiddetto *Life Cycle Thinking*, che considera tutte le fasi del ciclo di vita del prodotto: design, approvvigionamenti e filiera, formulazione, packaging, processo produttivo, logistica in e out, fase d'uso, fine vita. Inoltre, l'approccio del ciclo di vita ricomprende diversi indicatori di impatto ambientale, relativi a sistemi naturali e problematiche ambientali globali e regionali ben distinte (es.: effetto serra, impronta idrica, risorse non rinnovabili, etc.).

VINO

I risultati riportati in questa scheda sono riferiti ai seguenti prodotti:

VINO FERMO

Prodotto ottenuto esclusivamente dalla fermentazione alcolica totale o parziale di uva fresca o mosto d'uva. Il vino deve avere un titolo alcolometrico minimo e sono fissati limiti minimi specifici per le diverse zone vitivinicole.

VINO FRIZZANTE/SPUMANTE

Prodotto ottenuto mediante prima o seconda fermentazione alcolica da uve fresche, da mosto di uve o da vino e che, all'apertura del recipiente, rilascia anidride carbonica derivante esclusivamente dalla fermentazione. Comprende il vino spumante di qualità, il vino spumante aromatico di qualità, il vino spumante gassificato, il vino frizzante e il vino spumante gassificato.

NOTA BENE:

IL LIVELLO DI DETTAGLIO E LE DIFFERENZE TRA I RISULTATI PRESENTATI DERIVANO DIRETTAMENTE DALLE VARIE FONTI DI DATI, CHE UTILIZZANO DIVERSE METODOLOGIE ED APPROCCI NON DIRETTAMENTE CONFRONTABILI.

Le fonti di dati utilizzate per la costruzione della seguente scheda di prodotto sono state:

Product Environmental Footprint Category Rules (PEFCR) for Still and Sparkling wine –
 version 2.0

Schema europeo **Product Environmental Footprint**

Autori: Comité Européen des Entreprises Vins (CEEV), Pernod Ricard Winemakers Spain, Comité Interprofessionnel du Vin de Champagne (CIVC) and three Champagne producers represented by CIVC, Unione Italiana Vini (UIV), Soc. Agr. Salcheto, The European Container Glass Federation (FEVE), Amcor, Nomacorc, C.E. Liège, IHOBE – Public agency of environment of the Basque Government, Institut Français de la Vigne et du Vin (IFV), Lavola, Ecole supérieure d'agricultures (ESA) – Angers.

Validità: 31 dicembre 2021

Regione geografica di validità: Unione Europea

Le fonti di dati utilizzate per la costruzione della sequente scheda di prodotto sono state:

Product Environmental Footprint Category Rules (PEFCR) for Still and Sparkling wineversion 2.0

The Global Language of Business

Il metodo di valutazione degli impatti ambientali segue la metodologia **Product Environmental** Footprint (PEF), così come definita nella Raccomandazione 2013/179/UE della Commissione Europea del 9 aprile 2013.

L'unità funzionale è il consumo di 0,75 litri di vino imbottigliato.

Le fonti di dati utilizzate per la costruzione della seguente scheda di prodotto sono state:

• EPD del prodotto IUS NATURAE Valdobbiadene Prosecco Superiore D.O.C.G. Brut Millesimato dell'azienda BORTOLOMIOL S.p.A.

Schema internazionale Environmental Product Declaration

Autori: Bortolomiol S.p.A., Indaco2 S.r.l.

N° di registrazione EPD: S-P-03412

Validità: 30 marzo 2026

Regione geografica di validità: Europa

https://api.environdec.com/api/v1/EPDLibrary/Files/e488484e-765c-49de-5975-

08d90559b7e2/Data

PCR di riferimento: «Wine», v. 1.0, 13 novembre 2020

I risultati d'impatto sono riferiti a **0,75 l di vino** incluso il suo **imballaggio**.

Le fonti di dati utilizzate per la costruzione delle azioni di miglioramento e di comunicazione sono state:

PEF screening report in the context of the EU Product Environmental Footprint Category
 Rules (PEFCR) Pilot on Wine

Schema europeo **Product Environmental Footprint**

Autori: Comité Européen des Entreprises Vins (CEEV), Pernod Ricard Winemakers Spain, Comité Interprofessionnel du Vin de Champagne (CIVC) and three Champagne producers represented by CIVC, Unione Italiana Vini (UIV), Soc. Agr. Salcheto, The European Container Glass Federation (FEVE), Amcor, Nomacorc, C.E. Liège, IHOBE – Public agency of environment of the Basque Government, Institut Français de la Vigne et du Vin (IFV), Ecole supérieure d'agricultures (ESA) – Angers, Andalusian Institute of Technology (IAT), UNESCO Chair in Life Cycle and Climate Change (ESCI-OPF), European Commision.

Le fonti di dati utilizzate per la costruzione delle azioni di miglioramento e di comunicazione sono state:

PEF screening report in the context of the EU Product Environmental Footprint Category
 Rules (PEFCR) Pilot on Wine

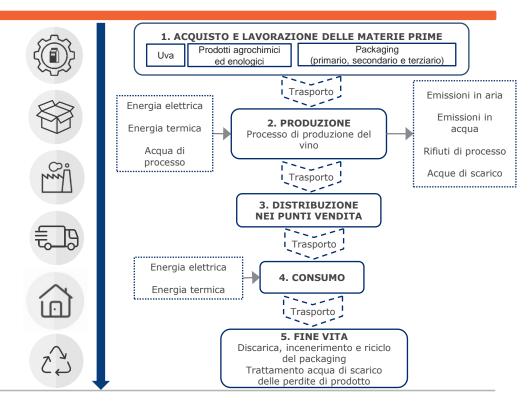
Regione geografica di validità: Unione Europea

Il metodo di valutazione degli impatti ambientali segue la metodologia **Product Environmental Footprint** (PEF), così come definita nella Raccomandazione 2013/179/UE della Commissione Europea del 9 aprile 2013.

Le fonti di dati utilizzate per la costruzione delle azioni di miglioramento e di comunicazione sono state:

- ECOINVENT DATABASE V. 3.8
- LIFE CYCLE COMMUNICATION TOOL

https://www.lifeeffige.eu/wp-content/uploads/2021/06/Deliverable B4 CommunicationTool.zip



FASI DEL CICLO DI VITA

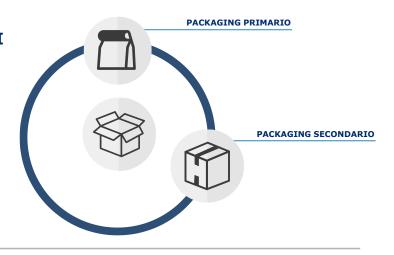
Lo studio include le seguenti fasi del ciclo di vita del prodotto, che vanno dalla culla alla tomba (from-cradle-to-grave):

- 1. Produzione delle materie prime e prelavorazione;
- 2. Produzione del packaging;
- 3. Processo produttivo;
- 4. Distribuzione;
- 5. Consumo;
- 6. Fine Vita.

FASI DEL CICLO DI VITA MATERIE PRIME E PACKAGING

INGREDIENTI E MATERIALI DI PACKAGING PRINCIPALI

PRODOTTI **ENOLOGICI**


PRODOTTI **AGROCHIMICI**

UVA

- ENZIMI
- ACIDIFICANTI
- CHIARIFICANTI
- FERMENTANTI
- CONSERVANTI

- PESTICIDI
- FERTILIZZANTI

- VETRO
- SUGHERO
- POLIETILENE (PET)
- ALLUMINIO
- CARTONE
- CARTA

PRODUZIONE

FASI PRINCIPALI DEL PROCESSO PRODUTTIVO VINO

LAVORAZIONE DELL'UVA

L'uva raccolta viene pesata e classificata, poi vengono tolte le foglie e gli steli. L'uva viene pigiata senza rompere i semi e si forma il mosto, una miscela di succo, polpa, pelle e semi. La vinificazione del vino bianco prevede la pigiatura del mosto seguita dalla chiarificazione e della fermentazione. La vinificazione del rosso prevede che il mosto vada direttamente alla fermentazione.

FERMENTAZIONE E CHIARIFICAZIONE

Durante questa fase gli zuccheri contenuti nel mosto sono trasformati dai lieviti in alcohol etilico e CO2. Al termine della fermentazione i lieviti morti e i solidi sospesi sono rimossi attraverso la chiarificazione. Questo processo può includere la sedimentazione dei solidi, la svinatura, l'affinamento e la filtrazione.

INVECCHIAMENTO E SECONDA FERMENTAZIONE

Il vino viene conservato per un periodo di tempo variabile in grandi cisterne o in botti di legno. Durante questo periodo può avvenire una seconda fermentazione che riduce l'acidità del vino. Molti vini rossi ed alcuni bianchi attraversano questa fase.

FASI DEL CICLO DI VITA DISTRIBUZIONE

PROCESSI INCLUSI NELLA FASE DI DISTRIBUZIONE

La distribuzione di questa categoria di prodotti avviene su tutto il territorio italiano e nel mondo.

Il trasporto non necessita di particolari condizioni di stoccaggio, come la refrigerazione.

Questa fase comprende le attività di trasporto del prodotto (distribuzione primaria, secondaria e terziaria), lo stoccaggio presso i centri di distribuzione e retail e lo smaltimento/recupero dell'imballaggio secondario e terziario (rifiuto). Gli impatti relativi allo smaltimento del packaging per il trasporto considerano uno scenario medio (italiano e/o europeo) per il destino di plastica e carta/cartone.

DISTRIBUZIONE SECONDARIA

Magazzino – Punto vendita

DISTRIBUZIONE PRIMARIA

Stabilimento - Magazzino

DISTRIBUZIONE TERZIARIA

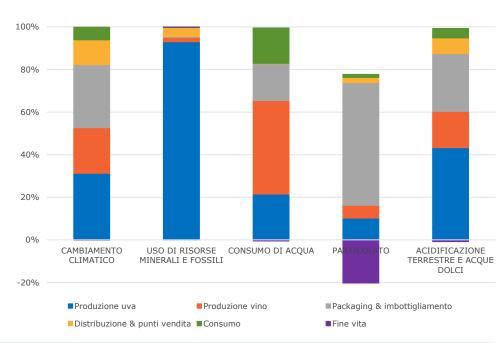
Punto vendita - Consumatore

FASI DEL CICLO DI VITA CONSUMO E FINE VITA

PROCESSI INCLUSI NELLA FASE DI CONSUMO E FINE VITA

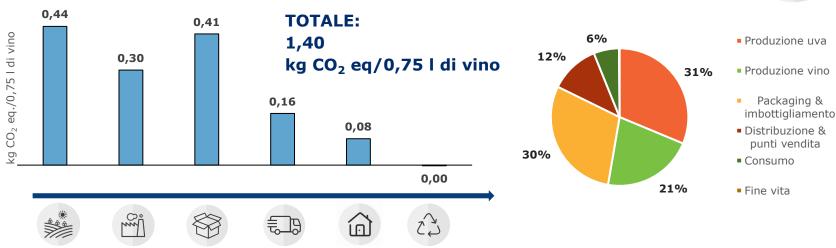
Questa fase include il consumo del prodotto presso il cliente finale, il trattamento di fine vita dello scarto di prodotto e del packaging.

Gli scenari di fine vita dello scarto di prodotto (vino residuo) e degli imballaggi devono essere tecnicamente ed economicamente fattibili e in linea con la regolamentazione in vigore nell'area geografica rilevante per lo studio. I parametri utilizzati per la modellazione del fine vita sono quelli indicati nelle PEFCR del vino.


RIFIUTO	RECUPERO DI MATERIA	RECUPERO DI ENERGIA	SMALTIMENTO IN DISCARICA
VETRO	66,00%	15,00%	19,00%
SUGHERO	0,00%	45,00%	55,00%
POLIETILENE	42,00%	26,00%	32,00%
ALLUMINIO	69,00%	7,00%	24,00%
CARTA/CARTONE	75,00%	11,00%	14,00%

VINO FERMO (PRODOTTO VIRTUALE)

CATEGORIA DI IMPATTO	RISULTATO TOTALE	UNITÀ
CAMBIAMENTO CLIMATICO	1,40	kg CO2 eq/0,75 l di prodotto
USO DI RISORSE MINERALI E FOSSILI	4,16x10 ⁻⁴	kg Sb eq./0,75 l di prodotto
CONSUMO DI ACQUA	3,27×10 ⁻²	m3 eq/0,75 l di prodotto
PARTICOLATO	1,23x10 ⁻³	kg PM 2,5 eq./0,75 l di prodotto
ACIDIFICAZIONE TERRESTRE E ACQUE DOLCI	1,08x10 ⁻²	mol H+ eq/0,75 l di prodotto



VINO FERMO (PRODOTTO VIRTUALE)

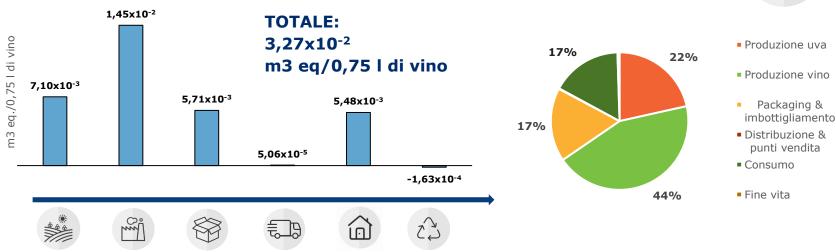
CAMBIAMENTO CLIMATICO

Misura tutti gli input e output che risultano in emissioni di gas a effetto serra, le cui conseguenze includono l'incremento delle temperature medie globali e improvvisi cambi climatici a livello regionale.

VINO FERMO (PRODOTTO VIRTUALE)

CONSUMO DI RISORSE FOSSILI E MINERALI

Indicatore di impatto che misura l'impoverimento di risorse fossili, minerali e metalli che influisce sulla loro disponibilità per usi futuri.

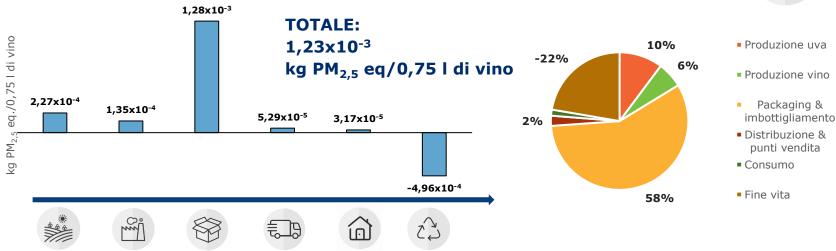


VINO FERMO (PRODOTTO VIRTUALE)

IMPRONTA IDRICA

00

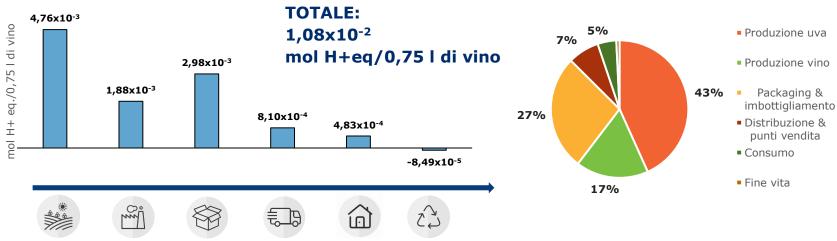
Indicatore di impatto che misura l'impoverimento della risorsa idrica in relazione alla scarsità locale di tale risorsa.



VINO FERMO (PRODOTTO VIRTUALE)

PARTICOLATO

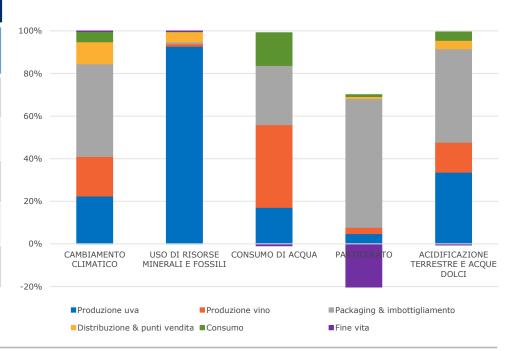
Indicatore di impatto che misura gli effetti avversi sulla salute umana delle emissioni di particolato (PM) e dei suoi precursori (NOx, SOx, NH3).



VINO FERMO (PRODOTTO VIRTUALE)

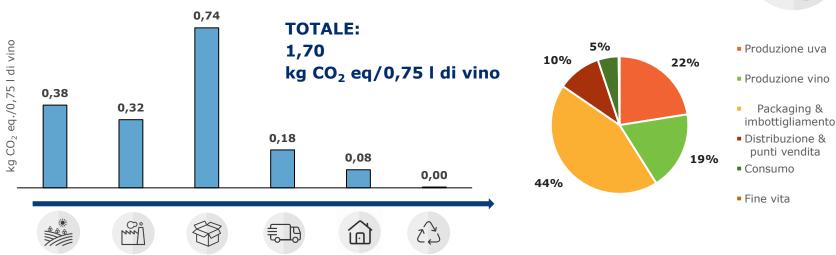
ACIDIFICAZIONE

Indicatore di impatto che misura le emissioni di sostanze acidificanti nell'ambiente, che comportano l'acidificazione delle acque e dei suoli, provocando il deterioramento delle foreste e dei laghi.



VINO SPUMANTE (PRODOTTO VIRTUALE)

CATEGORIA DI IMPATTO	RISULTATO TOTALE	UNITÀ
CAMBIAMENTO CLIMATICO	1,70	kg CO2 eq/0,75 l di prodotto
USO DI RISORSE MINERALI E FOSSILI	3,63x10 ⁻⁴	kg Sb eq./0,75 l di prodotto
CONSUMO DI ACQUA	3,52×10 ⁻²	m3 eq/ 0,75 l di prodotto
PARTICOLATO	1,63×10 ⁻³	kg PM 2,5 eq./0,75 l di prodotto
ACIDIFICAZIONE TERRESTRE E ACQUE DOLCI	1,22×10 ⁻²	mol H+ eq/0,75 l di prodotto



VINO SPUMANTE (PRODOTTO VIRTUALE)

CAMBIAMENTO CLIMATICO

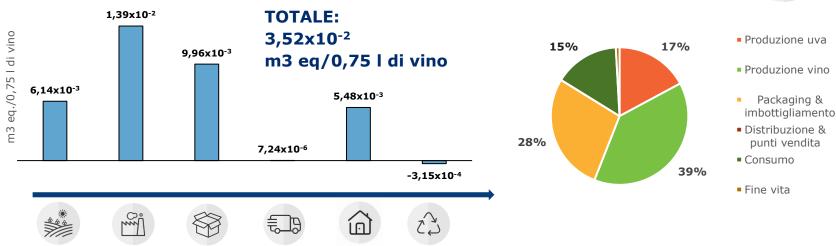
Misura tutti gli input e output che risultano in emissioni di gas a effetto serra, le cui conseguenze includono l'incremento delle temperature medie globali e improvvisi cambi climatici a livello regionale.

The Global Language of Business

VINO SPUMANTE (PRODOTTO VIRTUALE)

CONSUMO DI RISORSE FOSSILI E MINERALI

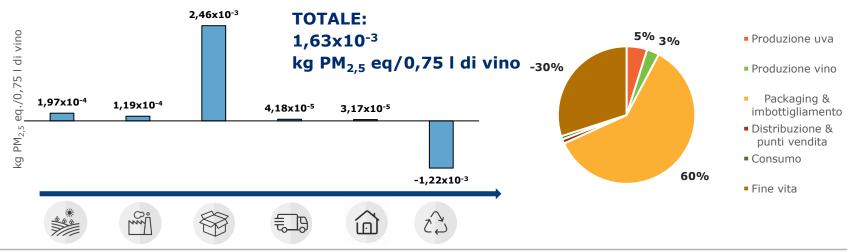
Indicatore di impatto che misura l'impoverimento di risorse fossili, minerali e metalli che influisce sulla loro disponibilità per usi futuri.



VINO SPUMANTE (PRODOTTO VIRTUALE)

IMPRONTA IDRICA

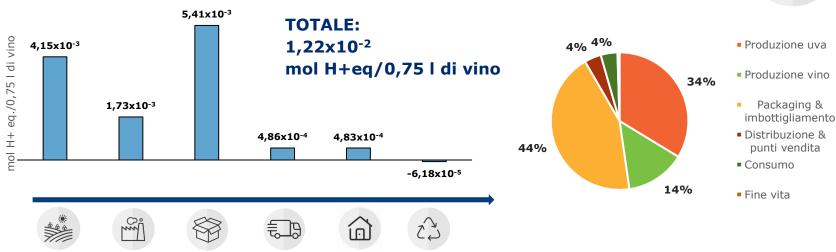
Indicatore di impatto che misura l'impoverimento della risorsa idrica in relazione alla scarsità locale di tale risorsa.



VINO SPUMANTE (PRODOTTO VIRTUALE)

PARTICOLATO

Indicatore di impatto che misura gli effetti avversi sulla salute umana delle emissioni di particolato (PM) e dei suoi precursori (NOx, SOx, NH3).



VINO SPUMANTE (PRODOTTO VIRTUALE)

ACIDIFICAZIONE

Indicatore di impatto che misura le emissioni di sostanze acidificanti nell'ambiente, che comportano l'acidificazione delle acque e dei suoli, provocando il deterioramento delle foreste e dei laghi.

PROCESSI PIU' RILEVANTI DI IMPATTO AMBIENTALE

VINO FERMO (PRODOTTO VIRTUALE)

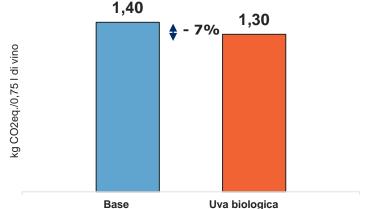
	CATEGORIA DI IMPATTO	*	or o		E	â	23
co	CAMBIAMENTO CLIMATICO	Pali di acciaio Consumo di elettricità	• Consumo di elettricità	Produzione bottiglia in vetro	Trasporto da punto vendita a casa	Consumo di elettricità per lavare il bicchiere e per refrigerare il vino	
No.	CONSUMO RISORSE FOSSILI E MINERALI	Coltivazione (bobine di zinco)					
00	IMPRONTA IDRICA	Consumo di elettricità	Consumo di elettricità	Produzione bottiglia in vetro		Consumo di elettricità per lavare il bicchiere	
	PARTICOLATO			Produzione bottiglia in vetro			
H*	ACIDIFICAZIONE	Pali di acciaioBobine di zincoConsumo di elettricità	Consumo di elettricità	Produzione bottiglia in vetro	 Trasporto del vino sfuso Trasporto da punto vendita a casa 	Consumo di elettricità per lavare il bicchiere	Raccolta e trasporto rifiuti

PROCESSI PIU' RILEVANTI DI IMPATTO AMBIENTALE

VINO SPUMANTE (PRODOTTO VIRTUALE)

	CATEGORIA DI IMPATTO		C.		E	â	د کی
CO	CAMBIAMENTO CLIMATICO	Pali di acciaio Consumo di elettricità	Consumo di elettricità	Produzione bottiglia in vetro	Trasporto da punto vendita a casa	Consumo di elettricità per lavare il bicchiere e per refrigerare il vino	Raccolta e trasporto rifiuti
N.	CONSUMO RISORSE FOSSILI E MINERALI	Coltivazione (bobine di zinco)					
00	IMPRONTA IDRICA	Consumo di elettricità	Consumo di elettricità	Produzione bottiglia in vetro		Consumo di elettricità per lavare il bicchiere	
	PARTICOLATO			Produzione bottiglia in vetro			
H *	ACIDIFICAZIONE	Pali di acciaioBobine di zincoConsumo di elettricità	Consumo di elettricità	Produzione bottiglia in vetro			Raccolta e trasporto rifiuti

Azioni di miglioramento



VINO FERMO (PRODOTTO VIRTUALE)

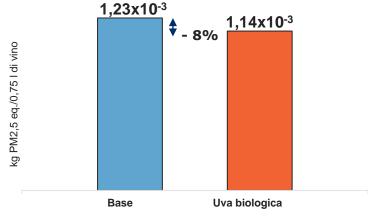
COLTIVAZIONE DELL'UVA

Sostituzione dell'uva coltivata con metodo tradizionale con uva coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
CAMBIAMENTO CLIMATICO	MATERIE PRIME	COLTIVAZIONE UVA

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

COLTIVAZIONE DELL'UVA

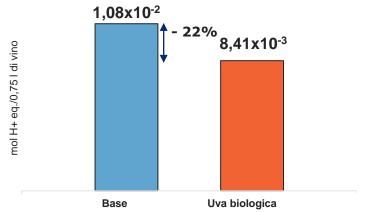
Sostituzione dell'uva coltivata con metodo tradizionale con uva coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
PARTICOLATO	MATERIE PRIME	COLTIVAZIONE UVA

The Global Language of Business

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

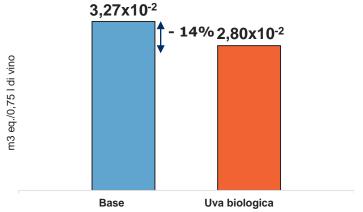
COLTIVAZIONE DELL'UVA

Sostituzione dell'uva coltivata con metodo tradizionale con uva coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
ACIDIFICAZIONE	MATERIE PRIME	COLTIVAIZIONE UVA

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

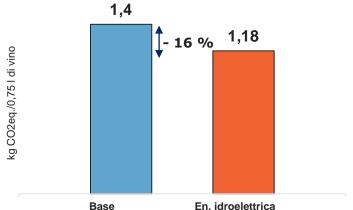
COLTIVAZIONE DELL'UVA

Sostituzione dell'uva coltivata con metodo tradizionale con uva coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
IMPRONTA IDRICA	MATERIE PRIME	COLTIVAZIONE UVA

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

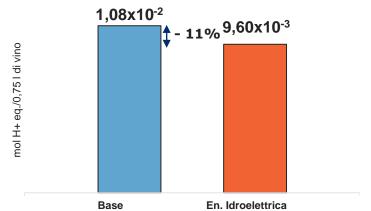
FONTE ENERGIA ELETTRICA

Sostituzione dell'energia elettrica da rete (residual mix) con energia elettrica da fonte rinnovabile (idroelettrico)

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
CAMBIAMENTO CLIMATICO	PRODUZIONE	ENERGIA ELETTRICA

^{*} Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

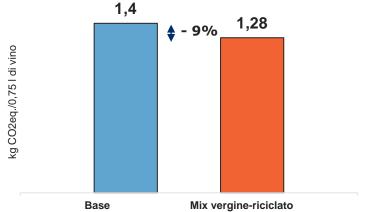
FONTE ENERGIA ELETTRICA

Sostituzione dell'energia elettrica da rete (residual mix) con energia elettrica da fonte rinnovabile (idroelettrico)

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
ACIDIFICAZIONE	PRODUZIONE	ENERGIA ELETTRICA

^{*} Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine


37

VINO FERMO (PRODOTTO VIRTUALE)

BOTTIGLIA IN VETRO

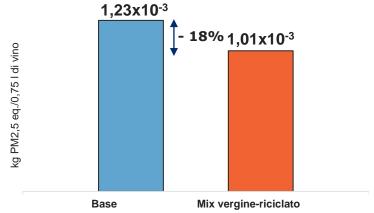
Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
CAMBIAMENTO CLIMATICO	PACKAGING	BOTTIGLIA IN VETRO

The Global Language of Business

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

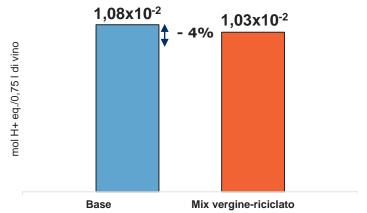
BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale	calcolata su	l ciclo di vita	complessivo.*
------------------------	--------------	-----------------	---------------

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
PARTICOLATO	PACKAGING	BOTTIGLIA IN VETRO

^{*} Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine


39

VINO FERMO (PRODOTTO VIRTUALE)

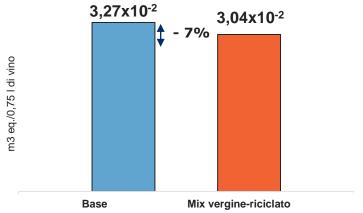
BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale	calcolata su	l ciclo di vita	complessivo.*
------------------------	--------------	-----------------	---------------

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
ACIDIFICAZIONE	PACKAGING	BOTTIGLIA IN VETRO

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO FERMO (PRODOTTO VIRTUALE)

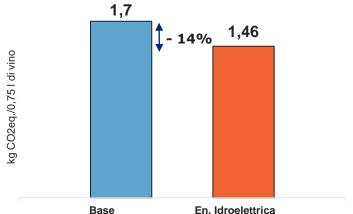
BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
IMPRONTA IDRICA	PACKAGING	BOTTIGLIA IN VETRO

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO SPUMANTE (PRODOTTO VIRTUALE)

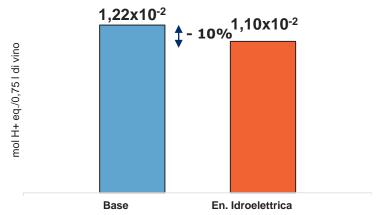
FONTE ENERGIA ELETTRICA

Sostituzione dell'energia elettrica da rete (residual mix) con energia elettrica da fonte rinnovabile (idroelettrico)

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
CAMBIAMENTO CLIMATICO	PRODUZIONE	ENERGIA ELETTRICA

The Global Language of Business

^{*} Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



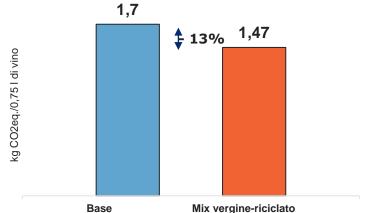
VINO SPUMANTE (PRODOTTO VIRTUALE)

FONTE ENERGIA ELETTRICA

Sostituzione dell'energia elettrica da rete (residual mix) con energia elettrica da fonte rinnovabile (idroelettrico)

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
ACIDIFICAZIONE	PRODUZIONE	ENERGIA ELETTRICA

^{*} Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO SPUMANTE (PRODOTTO VIRTUALE)

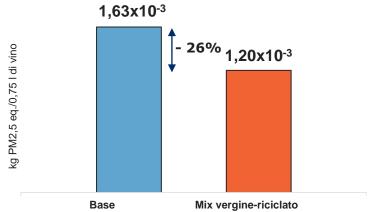
BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale	calcolata su	l ciclo di vita	complessivo.*
------------------------	--------------	-----------------	---------------

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
CAMBIAMENTO CLIMATICO	PACKAGING	BOTTIGLIA IN VETRO

^{*} Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO SPUMANTE (PRODOTTO VIRTUALE)

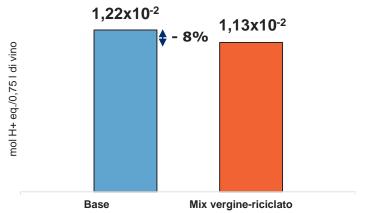
BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
PARTICOLATO	PACKAGING	BOTTIGLIA IN VETRO

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO SPUMANTE (PRODOTTO VIRTUALE)

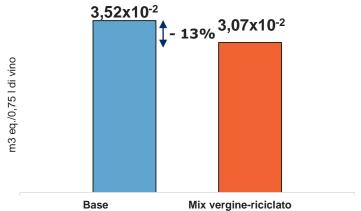
BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO	
ACIDIFICAZIONE	PACKAGING	BOTTIGLIA IN VETRO	

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine



VINO SPUMANTE (PRODOTTO VIRTUALE)

BOTTIGLIA IN VETRO

Sostituzione della bottiglia in vetro 100% vergine con bottiglia realizzata con un mix di materia prima 20% vergine e 80% riciclata

Differenza percentuale calcolata sul ciclo di vita complessivo.*

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO	
IMPRONTA IDRICA	PACKAGING	BOTTIGLIA IN VETRO	

* Fonte di dati utilizzata per la valutazione dell'impatto sul cambiamento climatico del vino fermo: PEF screening report in the context of the EU Product Environmental Footprint Category Rules (PEFCR) Pilot on wine

SUMMARY

CATEGORIA

Vino

FASI DEL CICLO DI VITA PIU' RILEVANTI

- Produzione dell'uva
- · Produzione del vino
- Packaging primario

PRODOTTO

0,75 l di **VINO FERMO** e relativo imballaggio

PROCESSI PIU' RILEVANTI

- · Prodotti agrochimici e metalli
- Produzione bottiglia in vetro
- Consumo di energia elettrica
- Trasporto dal negozio al consumatore

IMPATTI AMBIENTALI

CATEGORIA DI IMPATTO	RISULTATO TOTALE	UNITÀ
CAMBIAMENTO CLIMATICO	1,40	kg CO2 eq/0,75 l di prodotto
USO DI RISORSE MINERALI E FOSSILI	4,16x10 ⁻⁴	kg Sb eq./0,75 l di prodotto
CONSUMO DI ACQUA	3,27x10 ⁻²	m3 eq/0,75 l di prodotto
PARTICOLATO	1,23x10 ⁻³	kg PM 2,5 eq./0,75 l di prodotto
ACIDIFICAZIONE TERRESTRE E ACQUE DOLCI	1,08x10 ⁻²	mol H+ eq/0,75 l di prodotto

PRINCIPALI AZIONI DI MIGLIORAMENTO	RISULTATO ATTESO SUL CICLO DI VITA COMPLESSIVO	SOGGETTI COINVOLTI	
UVA DA COLTIVAZIONE BIOLOGICA	Riduzione dell'7% sul cambiamento climatico; 8% sul particolato; 22% sull'acidificazione; 14% sul consumo di acqua	Agricoltura e consumatore	
UTILIZZO DI ENERGIA RINNOVABILE	Riduzione del 16% sul cambiamento climatico; 11% sull'acidificazione		
BOTTIGLIE IN VETRO CON CONTENUTO RICICLATO	Riduzione dell'8% sul cambiamento climatico; 18% sul particolato; 4% sull'acidificazione; 7% sul consumo di acqua	Industria	

SUMMARY

CATEGORIA

Vino

FASI DEL CICLO DI VITA PIU' RILEVANTI

- Produzione dell'uva
- · Produzione del vino
- Packaging primario

PRODOTTO

0,75 l di **VINO SPUMANTE** e relativo imballaggio

PROCESSI PIU' RILEVANTI

- Prodotti agrochimici e metalli
- Produzione bottiglia in vetro
- Consumo di energia elettrica
- · Consumo di acqua
- Trasporto dal negozio al consumatore

IMPATTI AMBIENTALI

CATEGORIA DI IMPATTO	RISULTATO TOTALE	UNITÀ	
CAMBIAMENTO CLIMATICO	1,70	kg CO2 eq/0,75 l di prodotto	
USO DI RISORSE MINERALI E FOSSILI	3,63x10 ⁻⁴	kg Sb eq./0,75 l di prodotto	
CONSUMO DI ACQUA	3,52x10 ⁻²	m3 eq/ 0,75 l di prodotto	
PARTICOLATO	1,63x10 ⁻³	kg PM 2,5 eq./0,75 l di prodotto	
ACIDIFICAZIONE TERRESTRE E ACQUE DOLCI	1,22x10 ⁻²	mol H+ eq/0,75 l di prodotto	

PRINCIPALI AZIONI DI MIGLIORAMENTO	RISULTATO ATTESO SUL CICLO DI VITA COMPLESSIVO	SOGGETTI COINVOLTI	
UTILIZZO DI ENERGIA RINNOVABILE	Riduzione del 14% sul cambiamento climatico; 10% sull'acidificazione	Industria	
BOTTIGLIE IN VETRO CON CONTENUTO RICICLATO	Riduzione del 13% sul cambiamento climatico; 26% sul particolato; 8% sull'acidificazione; 13% sul consumo di acqua	Industria	

Analisi della comunicazione ambientale

ANALISI DELLA COMUNICAZIONE AMBIENTALE (1/2)

		Categorie di claim – Dimensioni tematiche				
		Indicazioni pratiche	Singole caratteristiche ambientali	Modalità di produzione/ approvvigionamento	Approccio ciclo di vita	Claim generici
r	Presenza % sui prodotti della categoria Vino	25%	20%	5%	N/D	4%
Categoria Vino Eiglo Dettaglio claim - Presenza % sui prodotti della categoria Vino	Presenza % sui prodotti della	- Uso e conservazione (1%) - Raccolta differenziata (24%)	- Riciclabilità (17%) - Compostabilità (7%)	- Disciplinari di filiera (5%)	/	- "Sostenibile" (4%)

The Global Language of Business

ANALISI DELLA COMUNICAZIONE AMBIENTALE (2/2)

Principali evidenze

- I claim più presenti sui prodotti di questa categoria sono relativi al packaging e materie prime.
- I tre tipi di claim più utilizzati riquardano: 1) riciclabilità 2) compostabilità 3) disciplinari di filiera.
- I claim riquardanti le modalità di raccolta differenziata dovrebbero essere presenti su tutti gli imballaggi, secondo la disposizione dell'art. 116 del Codice dell'Ambiente - d.lgs. 152/2006.
- I claim sull'uso e la conservazione dovrebbero essere presenti su tutti prodotti alimentari, secondo il Regolamento Europeo 1169/2011 relativo alla fornitura di informazioni sugli alimenti ai consumatori.
- Sono assenti claim basati su studi di impronta ambientale che dovrebbero essere incrementati.
- I claim generici non dovrebbero essere utilizzati senza una certificazione di eccellenza e il claim "sostenibile" non dovrebbe essere utilizzato affatto perché non compliant con le normative in vigore.

Suggerimenti

Per essere coerenti in ottica LCA, i claim dovrebbero riquardare gli hotspot identificati per la categoria, ossia:

Materie prime: si potrebbe agire e comunicare di più su aspetti/impatti relativi alle materie prime perché, secondo l'analisi LCA, questa è una fase rilevante. Ad esempio, la coltivazione di uva biologica permette di ridurre significativamente gli impatti ambientali principali.

The Global Language of Business

- Produzione: si potrebbe agire e utilizzare claim relativi alla produzione aziendale (es. energia rinnovabile).
- Packaging: Si potrebbero fare dei claim relativi al packaging (es. 80% vetro riciclato).

ESEMPI DI

COMUNICAZIONE USER FRIENDLY

Produrre vino utilizzando uva biologica, senza impiego di pesticidi e fertilizzanti, consente di ridurre in media l'impronta idrica del 14%!

Considerando 1000 bottiglie da 0,75 l di vino biologico si ha un risparmio di circa 5 m³ di acqua, corrispondenti all'acqua consumata per fare circa 60 docce da 5 minuti.

Produrre 1000 bottiglie da 0,75 l di vino biologico consente un risparmio di 5 m³ di acqua, corrispondenti all'acqua consumata per irrigare in una stagione 20 mq di terreno coltivato a pomodoro.

ESEMPI DI

COMUNICAZIONE USER FRIENDLY

Produrre vino utilizzando energia rinnovabile, nello specifico idroelettrica, consente di ridurre in media le emissioni di $CO_{2\text{equivalenti}}$ responsabili del cambiamento climatico del 15%! Considerando 1000 bottiglie da 0,75 l di vino si ha un risparmio di 225 kg di CO2 eq., corrispondenti ai kg di CO_2 emessi percorrendo 5000 km in treno alta velocità.

Produrre 1000 bottiglie da 0.75 l di vino consente un risparmio di 225 kg di CO2 eq., corrispondenti ai kg di CO_2 assorbiti in un anno da 30 alberi equivalenti.

ESEMPI DI

COMUNICAZIONE USER FRIENDLY

L'utilizzo di bottiglie in vetro realizzate a partire da un mix di materie prime vergini (20%) e riciclate (80%) consente di ridurre il consumo idrico del 7% per il vino fermo e del 13% per il vino spumante.

Considerando 1000 bottiglie da 0,75 l di vino spumante si ha un risparmio di 4,5 m³ di acqua eq., corrispondenti all'acqua consumata per fare circa 50 docce da 5 minuti.

Produrre 1000 bottiglie da 0,75 l di vino imbottigliato in vetro riciclato (80%) consente un risparmio di 4,5 m³ di acqua, corrispondenti all'acqua consumata in un giorno da 18 abitanti italiani.

Summary: i take aways

HOTSPOTS INDIVIDUATI (OLIO DI OLIVA)

MATERIE Uva e prodotti agrochimici PRIME **PACKAGING** Produzione della bottiglia in vetro Consumo di energia elettrica **PRODUZIONE** Consumo di acqua **DISTRIBUZI** Trasporto dal negozio al consumatore ONE

SUMMARY: I TAKE AWAYS

- Le variabili che determinano i maggiori impatti sono soprattutto nella fase di coltivazione dell'uva, in particolare: consumo di energia elettrica, produzione dei metalli impiegati nei campi e dei prodotti agrochimici. Seguono il consumo di energia elettrica e di acqua in fase di produzione del vino. Infine, la produzione delle bottiglie in vetro è risultata rilevante in molte categorie di impatto.
- Per abbattere l'impatto del vino un possibile intervento consiste nel passaggio dal metodo di agricoltura tradizionale a quello biologico per l'uva. Questo intervento consente di ridurre gli impatti sul cambiamento climatico dell'intero ciclo di vita del 7%, sul particolato dell'8%, sull'acidificazione del 22% e sull'impronta idrica del 14%.
- Un altro intervento migliorativo è quello di impiegare energia da fonte rinnovabile in fase di produzione. Questo porta ad una riduzione del 16% dell'impatto del ciclo di vita del prodotto vino fermo sulla categoria cambiamento climatico e dell'11% sulla categoria acidificazione. Nel caso del vino spumante si ha una riduzione del 14% dell'impatto del ciclo di vita sulla categoria cambiamento climatico e del 10% sull'acidificazione. Tale azione coinvolge principalmente l'industria.
- L'utilizzo di bottiglie in vetro con contenuto riciclato consente di ridurre gli impatti sul cambiamento climatico derivanti dall'intero ciclo di vita dell'8% per il vino fermo e del 13% per il vino spumante, l'impatto sul particolato del 18% per il vino fermo e del 26% per il vino spumante, l'acidificazione del 4% per il vino fermo e dell'8% per il vino spumante e l'impronta idrica del 7% per il vino fermo e del 13% per il vino spumante. Quest'azione coinvolge principalmente l'industria.

PRINCIPALI ASSUNZIONI & LIMITAZIONI

- La valutazione dell'impatto ambientale e delle azioni di miglioramento è stata effettuata solo su alcuni indicatori ambientali, che potrebbero essere in conflitto con altri aspetti ambientali.
- L'estensione della categoria analizzata nel presente documento non ha permesso di coprire e di analizzare con lo stesso grado di dettaglio tutti i prodotti in essa contenuti, dunque i prodotti selezionati la coprono parzialmente.
- Altre assunzioni e limitazioni derivano direttamente da quelle contenute nelle fonti di dati utilizzate.

Contattaci

ECR ITALIA

ecr@gs1it.org
sostenibilita@gs1it.org

