

SOSTENIBILITÀ NELLE CATEGORIE

CATEGORIA MERCEOLOGICA:

DISTILLATI E LIQUORI

INDICE DEI CONTENUTI

- Obiettivi del progetto
- Approccio Life Cycle Thinking
- Categoria di prodotto
- Fonti di dati e metodo di valutazione dell'impatto ambientale
- Fasi del ciclo di vita
- Indicatori più rilevanti di impatto ambientale
- Azioni di miglioramento
- Esempi di comunicazione "User-friendly"
- Summary
- Assunzioni e limitazioni

OBIETTIVI DEL PROGETTO

Lo studio, realizzato da Ergo srl, società spin-off della Scuola Superiore Sant'Anna, si inserisce all'interno di un progetto che mira a **integrare la sostenibilità nel dialogo tra industria e distribuzione**, con l'obiettivo di generare un impatto positivo sull'ambiente. Ciò attraverso una preliminare, chiara e condivisa comprensione, basata su un metodo scientifico, di quali sono gli elementi che generano maggiori criticità e ricadute negative sull'ambiente, così da integrare queste evidenze nel dialogo tra le parti e con il consumatore e comprendere le azioni di miglioramento da perseguire.

L'attività è stata condotta attraverso un'analisi di letteratura delle principali fonti che hanno trattato, secondo un approccio scientifico, gli aspetti ambientali delle varie categorie di prodotto. Le evidenze raccolte sono state analizzate e interpretate, per meglio comprenderne la qualità e la rilevanza. L'ultima parte del lavoro si è concentrata sullo studio dei possibili ambiti di intervento rispetto agli aspetti ambientali individuati, al fine di migliorarne le caratteristiche di sostenibilità. Lo studio sarà poi oggetto di confronto in ambito ECR con alcune imprese rappresentative del settore, operanti nelle categorie in esame.

L'analisi complessiva coprirà le principali macro-categorie merceologiche del largo consumo, con lo scopo di rispondere alle seguenti domande chiave: Quali sono le variabili che determinano i maggiori impatti? Dove si collocano nel ciclo di vita del prodotto? Quali sono le leve e le azioni che consentono di migliorare? Chi le può agire tra i diversi soggetti coinvolti? Con quali risultati attesi? Quali sinergie tra i player?

APPROCCIO LIFE CYCLE THINKING

L'approccio adottato ha visto una ricerca e analisi di studi di letteratura, dataset disponibili, studi settoriali, progetti di ricerca condotti dal nostro centro di ricerca o da altre istituzioni e organizzazioni private al fine di identificate gli aspetti ambientali e gli indicatori d'impatto rilevanti per la categoria merceologica in analisi.

La rilevanza degli aspetti e degli indicatori ambientali, individuati per le varie categorie di prodotto, è garantita dal tipo di **approccio utilizzato dalle fonti analizzate**: un metodo analitico, basato sul cosiddetto *Life Cycle Thinking*, che considera tutte le fasi del ciclo di vita del prodotto: design, approvvigionamenti e filiera, formulazione, packaging, processo produttivo, logistica in e out, fase d'uso, fine vita. Inoltre, l'approccio del ciclo di vita ricomprende diversi indicatori di impatto ambientale, relativi a sistemi naturali e problematiche ambientali globali e regionali ben distinte (es.: effetto serra, impronta idrica, risorse non rinnovabili, etc.).

CATEGORIA DI PRODOTTO **LIQUORI**

I risultati riportati in questa scheda sono riferiti ai seguenti prodotti:

LIQUORI

Bevanda zuccherina, caratterizzata da una base alcolica a cui vengono poi aggiunte erbe, frutta, aromi e zucchero. La gradazione alcolica è tra i 15° e i 55°.

NOTA BENE:

IL LIVELLO DI DETTAGLIO E LE DIFFERENZE TRA I RISULTATI PRESENTATI DERIVANO DIRETTAMENTE DALLE VARIE FONTI DI DATI, CHE UTILIZZANO DIVERSE METODOLOGIE ED APPROCCI NON DIRETTAMENTE CONFRONTABILI.

FONTI DI DATI & METODO DI VALUTAZIONE DELL'IMPATTO AMBIENTALE

Le fonti di dati utilizzate per la costruzione della seguente scheda di prodotto sono state:

- ECOINVENT DATABASE V. 3.9
- DATI PRIMARI PRESSO AZIENDE DEL SETTORE CHE HANNO ACCETTATO DI COLLABORARE AL PROGETTO

Il metodo di valutazione degli impatti ambientali è l'**Environmental Footprint 3.1**, sviluppato dalla Commissione Europea nell'ambito dell'iniziativa sulla **Product Environmental Footprint** (PEF).

I risultati d'impatto sono riferiti a **1 l di liquore** incluso il suo **imballaggio**.

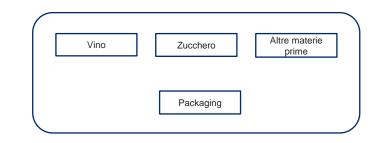
FONTI DI DATI & METODO DI VALUTAZIONE DELL'IMPATTO AMBIENTALE

Le fonti di dati utilizzate per la costruzione delle azioni di miglioramento e di comunicazione sono state:

- ECOINVENT DATABASE V. 3.9
- LIFE CYCLE COMMUNICATION TOOL

https://www.lifeeffige.eu/wp-content/uploads/2021/06/Deliverable B4 CommunicationTool.zip

FASI DEL CICLO DI VITA


Lo studio include le seguenti fasi del ciclo di vita del prodotto, che vanno dalla culla al cancello (from-cradle-to-gate):

- 1. Produzione delle materie prime;
- 2. Produzione del packaging;
- 3. Processo produttivo.

Consumabili

Rifiuti di processo

FASI DEL CICLO DI VITA MATERIE PRIME E PACKAGING

INGREDIENTI PRINCIPALI

VINO

ALCOL

ZUCCHERO

ERBE

FRUTTA/RADICI

ACIDO CITRICO

AROMI

MATERIALI DI PACKAGING PRIMARIO

VETRO

ALLUMINIO

CARTA

PRODUZIONE

FASI PRINCIPALI DEL PROCESSO PRODUTTIVO

FILTRAZIONE E CHIARIFICA

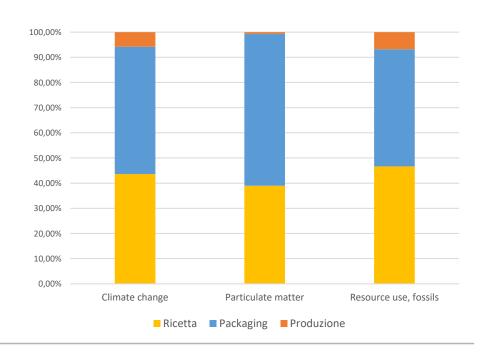
I diversi ingredienti vengono miscelati e attraversano varie fasi di filtrazione e chiarifica per ottenere un prodotto più limpido.

REFRIGERAZIONE E STOCCAGGIO

Il prodotto viene refrigerato in apposite celle e stoccato in attesa di essere imballato.

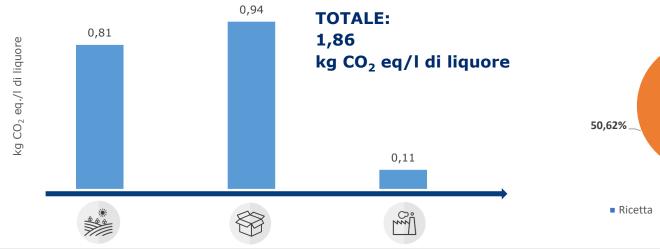
IMBOTTIGLIAMENTO

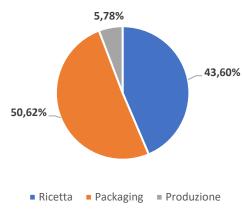
Il prodotto viene imbottigliato e imballato per la spedizione.



LIQUORI

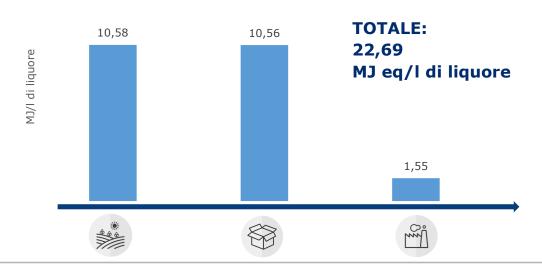
CATEGORIA DI IMPATTO	RISULTATO TOTALE	UNITÀ	
CAMBIAMENTO CLIMATICO	1,86	kg CO2 eq/l di prodotto	
CONSUMO DI RISORSE FOSSILI	22,69	MJ/l di prodotto	
PARTICOLATO	1,41x10 ⁻⁷	disease inc./l di prodotto	

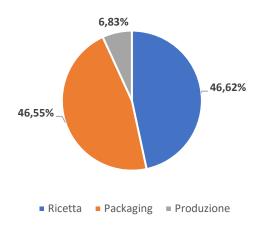



LIQUORI

CAMBIAMENTO CLIMATICO

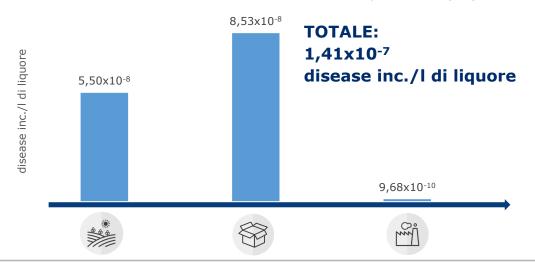
Misura tutti gli input e output che risultano in emissioni di gas a effetto serra, le cui conseguenze includono l'incremento delle temperature medie globali e improvvisi cambi climatici a livello regionale

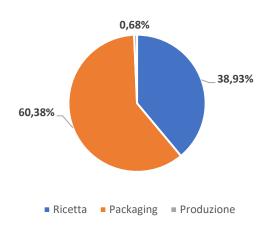



LIQUORI

CONSUMO DI RISORSE FOSSILI

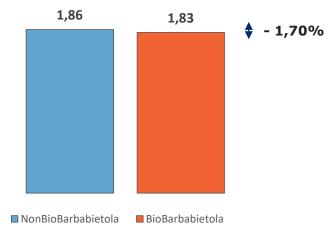
Indicatore di impatto che misura l'impoverimento di risorse fossili, che influisce sulla loro disponibilità per usi futuri




LIQUORI

PARTICOLATO

Indicatore di impatto che misura gli effetti avversi sulla salute umana delle emissioni di particolato (PM) e dei suoi precursori (NOx, SOx, NH3)

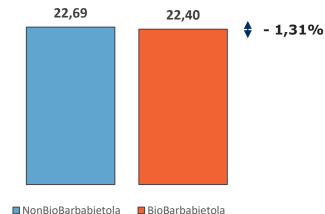

Azioni di miglioramento

BARBABIETOLA DI ORIGINE BIOLOGICA

Sostituzione della barbabietola coltivata con metodo tradizionale con barbabietola coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

The Global Language of Business

 ${\it Differenza\ percentuale\ calcolata\ sul\ ciclo\ di\ vita\ complessivo}$

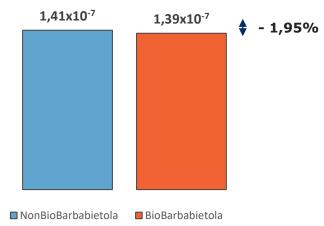


kgCO2eq/I di liquore

BARBABIETOLA DI ORIGINE BIOLOGICA

Sostituzione della barbabietola coltivata con metodo tradizionale con barbabietola coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

Differenza percentuale calcolata sul ciclo di vita complessivo

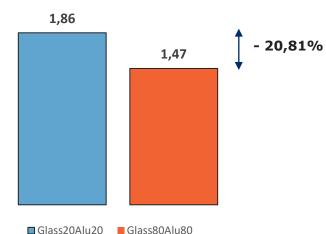


MJ/I di liquore

BARBABIETOLA DI ORIGINE BIOLOGICA

Sostituzione della barbabietola coltivata con metodo tradizionale con barbabietola coltivata con metodo biologico, in cui vengono eliminati pesticidi e fertilizzanti

Differenza percentuale calcolata sul ciclo di vita complessivo

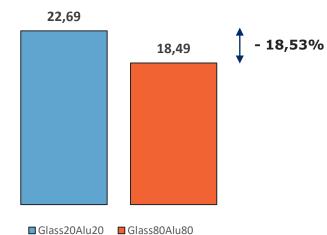


disease inc./I di liquore

AUMENTO DEL PACKAGING RICICLATO

Aumento della percentuale di materiale riciclato per il vetro e l'alluminio, passando da un 20% all'80%

Differenza percentuale calcolata sul ciclo di vita complessivo

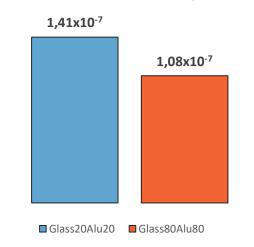


kg CO2eq/I di Iiquore

AUMENTO DEL PACKAGING RICICLATO

Aumento della percentuale di materiale riciclato per il vetro e l'alluminio, passando da un 20% all'80%

Differenza percentuale calcolata sul ciclo di vita complessivo


MJ/I di liquore

AUMENTO DEL PACKAGING RICICLATO

Aumento della percentuale di materiale riciclato per il vetro e l'alluminio, passando da un 20% all'80%

Differenza percentuale calcolata sul ciclo di vita complessivo

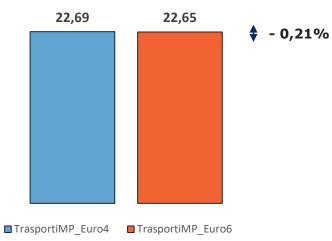


- 23,26%

AUMENTO DELLA CLASSE EURO PER IL TRASPORTO DELLE MATERIE PRIME

Aumento della classe Euro per il trasporto con tir delle materie prime, passando da Euro 4 a Euro 6

Differenza percentuale calcolata sul ciclo di vita complessivo



kg CO2eq./I di liquore

AUMENTO DELLA CLASSE EURO PER IL TRASPORTO DELLE MATERIE PRIME

Aumento della classe Euro per il trasporto con tir delle materie prime, passando da Euro 4 a Euro 6

CATEGORIA DI IMPATTO	FASE DEL CICLO DI VITA SU CUI SI AGISCE	PROCESSO
CONSUMO DI RISORSE FOSSILI	MATERIE PRIME	CLASSE EURO TIR

 ${\it Differenza\ percentuale\ calcolata\ sul\ ciclo\ di\ vita\ complessivo}$



MJ/I di liquore

AUMENTO DELLA CLASSE EURO PER IL TRASPORTO DELLE MATERIE PRIME

Aumento della classe Euro per il trasporto con tir delle materie prime, passando da Euro 4 a Euro 6

 ${\it Differenza\ percentuale\ calcolata\ sul\ ciclo\ di\ vita\ complessivo}$

disease inc./I di liquore

SUMMARY

CATEGORIA

Liquori

PROCESSI PIU'

 Produzione delle materie prime

VITA PIU' RILEVANTI

FASI DEL CICLO DI

Packaging primario

PRODOTTO

1 l di **LIQUORE** e relativo imballaggio

- Produzione vino
- Produzione glucosio
- Produzione bottiglia in vetro
- Produzione tappo in alluminio
- Trasporti di approvvigionamento

IMPATTI AMBIENTALI

CATEGORIA DI IMPATTO	RISULTATO TOTALE	UNITÀ
CAMBIAMENTO CLIMATICO	1,86	kg CO ₂ eq/l di prodotto
CONSUMO DI RISORSE FOSSILI	22,69	MJ/I di prodotto
PARTICOLATO	1,41x10 ⁻⁷	disease inc./di prodotto

PRINCIPALI AZIONI DI MIGLIORAMENTO	RISULTATO ATTESO SUL CICLO DI VITA COMPLESSIVO	SOGGETTI COINVOLTI	
BARBABIETOLA DA ZUCCHERO DA COLTIVAZIONE BIOLOGICA	Riduzione dell'1,7% sul cambiamento climatico; 1,95% sul particolato; 1,31% sul consumo di risorse fossili	Agricoltura	
AUMENTO DELLA QUOTA RICICLATA DI VETRO E ALLUMINIO DAL 20% ALL'80%	Riduzione del 20,81% sul cambiamento climatico; 23,26% sul particolato; 18,53% sul consumo di risorse fossili	Industria	
TRASPORTI DI APPROVVIGIONAMENTO CON TIR EURO 6 INVECE CHE EURO 4	Riduzione dello 0,31% sul cambiamento climatico; 1,22% sul particolato; 0,21% sul consumo di risorse fossili	Industria	

Analisi della comunicazione ambientale

ANALISI DELLA COMUNICAZIONE AMBIENTALE (1/2)

	Categorie di claim – Dimensioni tematiche				
	Indicazioni pratiche	Singole caratteristiche ambientali	Modalità di produzione/ approvvigionamento	Approccio ciclo di vita	Claim generici
Presenza % sui prodotti della categoria Distillati e liquori	26%	13%	N/D	N/D	N/D
Dettaglio claim - Presenza % sui prodotti della categoria Distillati e liquori	- Uso e conservazione (8%) - Raccolta differenziata (21%)	- Riciclabilità (10%) - Formulazione degli ingredienti (4%) - Contenuto riciclato (0.7%)	/	/	/

ANALISI DELLA COMUNICAZIONE AMBIENTALE (2/2)

Principali evidenze

- I claim più presenti sui prodotti di questa categoria sono relativi al packaging e alle materie prime
- I due tipi di claim più utilizzati riguardano: 1) riciclabilità 2) formulazione degli ingredienti.
- I claim riguardanti le modalità di raccolta differenziata dovrebbero essere presenti su tutti gli imballaggi, secondo la disposizione dell'art. 116 del Codice dell'Ambiente d.lgs. 152/2006.
- Sono assenti claim basati su studi di impronta ambientale che dovrebbero essere incrementati.
- I claim generici non dovrebbero essere utilizzati senza una certificazione di eccellenza e il claim "sostenibile" non dovrebbe essere utilizzato affatto perché non compliant con le normative in vigore.

Suggerimenti

Per essere coerenti in ottica LCA, i claim dovrebbero riguardare gli hotspot identificati per la categoria, ossia:

- Packaging: si potrebbe agire e utilizzare claim relativi al packaging (es. 80% riciclato al meno per vetro e alluminio) che, secondo l'analisi LCA, permetterebbe di ridurre significativamente l'impatto ambientale del prodotto.
- Materie prime: si potrebbe agire e comunicare di più su aspetti/impatti relativi alle materie prime perché, secondo l'analisi LCA, un prodotto a base di ingredienti biologici (es. barbabietola bio per lo zucchero) ridurrebbe gli impatti ambientali principali.

ESEMPI DI

COMUNICAZIONE USER FRIENDLY

Considerando 100 bottiglie da 1 l di liquore e aumentando la quota di vetro e alluminio riciclato dal 20% all'80%, si ha un risparmio di 39 kg CO_2 eq, che equivalgono ai kg di CO_2 eq emessi percorrendo 870 km con un treno ad alta velocità.

Considerando 1000 bottiglie da 1 l di liquore e aumentando la quota di vetro e alluminio riciclato dal 20% all'80%, si ha un risparmio di 4200 MJ, che equivalgono ai MJ consumati per illuminare per 14 minuti uno stadio da calcio per i mondiali.

Summary: i take aways

HOTSPOTS INDIVIDUATI

SUMMARY: I TAKE AWAYS

- Le variabili che determinano i maggiori impatti sono soprattutto nella fase di produzione delle materie prime e del packaging, in particolare contribuiscono il vino e il glucosio e i materiali vergini vetro e alluminio utilizzati per l'imballaggio primario. Anche il trasporto di approvvigionamento con tir ha una certa influenza.
- L'aumento della quota riciclata di vetro e alluminio, dal 20% all'80%, consente di ridurre gli impatti ambientali su tutte le categorie d'impatto principali. Nello specifico si ha un abbattimento dell'impatto sul cambiamento climatico pari al 20%, sul particolato del 23% e sul consumo di risorse fossili del 18%.
- Il contributo importante di alcune materie prime sugli impatti ambientali delle categorie principali, suggerisce la necessità di
 raccogliere dati primari dai fornitori di vino e glucosio soprattutto. Inoltre, anche il coinvolgimento dei produttori di packaging è
 fondamentale, per determinare quale sia la quota massima possibile di materiale riciclato da inserire. Infine, sarebbe opportuno
 un approfondimento sul tipo di mezzi di trasporto utilizzati per l'approvvigionamento, in modo da determinare opportune azioni
 correttive anche su questo aspetto.

PRINCIPALI ASSUNZIONI & LIMITAZIONI

- La valutazione dell'impatto ambientale e delle azioni di miglioramento è stata effettuata solo su alcuni indicatori ambientali, che potrebbero essere in conflitto con altri aspetti ambientali.
- L'estensione della categoria analizzata nel presente documento non ha permesso di coprire e di analizzare con lo stesso grado di dettaglio tutti i prodotti in essa contenuti, dunque i prodotti selezionati la coprono parzialmente.
- Altre assunzioni e limitazioni derivano direttamente da quelle contenute nelle fonti di dati utilizzate.

Contattaci

ECR ITALIA

ecr@gs1it.org
sostenibilita@gs1it.org

